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Black Holes
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Those notes are meant to accompany my lectures at the CIMPA-UNESCO-
MOROCCO School “Riemannian Geometry, pseudo-Riemannian Geometry and
Mathematical Physics”, May 19-30, 2008, Faculty of Science and Techniques,
Marrakech, Morocco. These are not lecture notes, as I will only lecture on a
very small part of the material covered here: I am planning a detailed intro-
duction to the Schwarzschild metric, followed by a concise overview of the Kerr
and of the Emparan-Reall ones. I plan to finish with an outline of the proof
of uniqueness of static black holes. I hope that the notes will be useful to the
participants in further studies of the subject.

I will not lecture on the material contained in the appendix at all; it is
hoped that the participants of the school will already be familiar with a sub-
stantial part of the material presented there and so this is included here for
self-study before the lectures for those who are not, but also to fix conventions
and notations.

The readers of those notes are invited to inform me of any misprints and/or
mistakes, please send an email to chrusciel@maths.ox.ac.uk
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Chapter 1

Fundamentals

Black holes belong to the most fascinating objects predicted by Einstein’s theory
of gravitation. Although they have been studied for years,1 they still attract
tremendous attention in the physics and astrophysics literature. It turns out
that several field theories are known to possess solutions which exhibit black
hole properties:

• The “standard” gravitational ones which, according to our current pos-
tulates, are black holes for all classical fields.

• The “dumb holes”, which are the sonic counterparts of black holes, first
discussed by Unruh [72].

• The “optical” ones – the black-hole counterparts arising in the theory of
moving dielectric media, or in non-linear electrodynamics [37, 55].

• The “numerical black holes” – objects constructed by numerical general
relativists.

(An even longer list of models and submodels can be found in [1].) In this
work we shall discuss various aspects of the above. The reader is referred to
[3, 17, 25, 28, 61, 73] and references therein for a review of quantum aspects of
black holes. We start with a short review of the observational status of black
holes in astrophysics.

1.1 Black holes as astrophysical objects

When a star runs out of nuclear fuel, it must find ways to fight gravity. Current
physics predicts that dead stars with masses up to the Chandrasekhar limit,
MmcH = 1.4M¯, become white dwarfs, where electron degeneracy supplies the
necessary pressure. Above the Chandrasekhar limit, and up to a second mass
limit, MNS,max ∼ 2 − 3M¯, dead stars are expected to become neutron stars,
where neutron degeneracy pressure holds them up. If a dead star has a mass

1The reader is referred to the introduction to [9] for an excellent concise review of the
history of the concept of a black hole, and to [8, 27] for more detailed ones.

5



6 CHAPTER 1. FUNDAMENTALS

M > MNS,max, there is no known force that can hold the star up. What we
have then is a black hole.

While there is growing evidence that black holes do indeed exist in astro-
physical objects, and that alternative explanations for the observations dis-
cussed below seem less convincing, it should be borne in mind that no undis-
puted evidence of occurrence of black holes has been presented so far. The
flagship black hole candidate used to be Cygnus X-1, known and studied for
years (cf., e.g., [9]), and it still remains a strong one. Table 1.12 lists a series
of further strong black hole candidates in X-ray binary systems; Mc is mass of
the compact object and M∗ is that of its optical companion; some other candi-
dates, as well as references, can be found in [45, 53]; a very readable overview of
the observations can be found in [50]. The binaries have been divided into two
families: the High Mass X-ray Binaries (HMXB), where the companion star is
of (relatively) high mass, and the Low Mass X-ray Binaries (LMXB), where the
companion is typically below a solar mass. The LMXB’s include the ”X-ray
transients”, so-called because of flaring-up behaviour. This particularity allows
to make detailed studies of their optical properties during the quiescent periods,
which would be impossible during the periods of intense X-ray activity. The
stellar systems listed have X-ray spectra which are neither periodic (that would
correspond to a rotating neutron star), nor recurrent (which is interpreted as
thermonuclear explosions on a neutron star’s hard surface). The final selection
criterion is that of the mass Mc exceeding the Chandrasekhar limit MC ≈ 3
solar masses M¯.3 According to the authors of [9], the strongest black hole can-
didate in 1999 was V404 Cygni, which belongs to the LMXB class. Table 1.1
should be put into perspective by realizing that, by some estimates [39], a typ-
ical galaxy – such as ours – should harbour 107 − 108 stellar black mass holes.
We note an interesting proposal, put forward in [10], to carry out observations
by gravitational microlensing of some 20 000 stellar mass black holes that are
predicted [47] to cluster within 0.7 pc of Sgr A∗ (the centre of our galaxy).

2The recent review [53] lists thirteen black hole candidates.
3See [45] for a discussion and references concerning the value of MC .
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Table 1.1: Stellar mass black hole candidates (from [39])

Type Binary system Mc/M¯ M∗/M¯

HMXB: Cygnus X-1 11–21 24–42

LMC X-3 5.6 –7.8 20

LMC X-1 ≥ 4 4–8

LMXB: V 404 Cyg 10–15 ≈ 0.6

A 0620-00 5–17 0.2–0.7

GS 1124-68 (Nova Musc) 4.2–6.5 0.5–0.8

GS 2000+25 (Nova Vul 88) 6-14 ≈ 0.7

GRO J 1655-40 4.5 – 6.5 ≈ 1.2

H 1705-25 (Nova Oph 77) 5–9 ≈ 0.4

J 04224+32 6–14 ≈ 0.3 – 0.6
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Table 1.2: Twenty-nine supermassive black hole candidates (from [32, 46])

dynamics of host galaxy Mh/M¯ host galaxy Mh/M¯

water maser discs: NGC 4258 4× 107

gas discs: IC 1459 2× 108 M 87 3× 109

NGC 2787 4× 107 NGC 3245 2× 108

NGC 4261 5× 108 NGC 4374 4× 108

NGC 5128 2× 108 NGC 6251 6× 108

NGC 7052 3× 108

stars: NGC 821 4× 107 NGC 1023 4× 107

NGC 2778 1× 107 NGC 3115 1× 109

NGC 3377 1× 108 NGC 3379 1× 108

NGC 3384 1× 107 NGC 3608 1× 108

NGC 4291 2× 108 NGC 4342 3× 108

NGC 4473 1× 108 NGC 4486B 5× 108

NGC 4564 6× 107 NGC 4649 2× 109

NGC 4697 2× 108 NGC 4742 1× 107

NGC 5845 3× 108 NGC 7457 4× 106

Milky Way 2.5× 106
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It is now widely accepted that quasars and active galactic nuclei are powered
by accretion onto massive black holes [41, 76]. Further, over the last few years
there has been increasing evidence that massive dark objects may reside at the
centres of most, if not all, galaxies [40, 64]. In several cases the best explanation
for the nature of those objects is that they are “heavyweight” black holes, with
masses ranging from 106 to 1010 solar masses. Table 1.24 lists some supermassive
black hole candidates; some other candidates, as well as precise references,
can be found in [32, 45, 46, 63]. The main criterion for finding candidates for
such black holes is the presence of a large mass within a small region; this is
determined by maser line spectroscopy, gas spectroscopy, or by measuring the
motion of stars orbiting around the galactic nucleus. The reader is referred
to [49] for a discussion of the maser emission lines and their analysis for the
supermassive black hole candidate NGC 4258. An example of measurements via
gas spectrography is given by the analysis of the Hubble Space Telescope (HST)

Figure 1.1: Hubble Space Telescope observations of spectra of gas in the vicinity
of the nucleus of the radio galaxy M 87, NASA and H. Ford (STScI/JHU) [67].

observations of the radio galaxy M 87 [71] (compare [41]): A spectral analysis
shows the presence of a disk-like structure of ionized gas in the innermost few arc
seconds in the vicinity of the nucleus of M 87. The velocity of the gas measured
by spectroscopy (cf. Fig. 1.1) at a distance from the nucleus of the order of
6× 1017 m, shows that the gas recedes from us on one side, and approaches us
on the other, with a velocity difference of about 920 km s−1 . This leads to a

4The table lists those galaxies which are listed both in [46] and [32]; we note that some
candidates from earlier lists [63] do not occur any more in [32, 46]. Nineteen of the observations
listed have been published in 2000 or 2001.
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mass of the central object of ∼ 3× 109 M¯, and no form of matter can occupy
such a small region except for a black hole. Figure 1.2 shows another image,
reconstructed out of HST observations, of a recent candidate for a supermassive
black hole – the (active) galactic nucleus of NGC 4438 [30].

Active Galaxy NGC 4438

Hubble Space Telescope • WFPC2

NASA and J. Kenney (Yale University) • STScI-PRC00-21

Figure 1.2: Hubble Space Telescope observations [30] of the nucleus of the
galaxy NGC 4438, from the STScI Public Archive [67].
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To close the discussion of Table 1.2, we note that the determination of mass
of the galactic nuclei via direct measurements of star motions has been made
possible by the unprecedentedly high angular resolution and sensitivity of the
HST, see also Figure 1.3.
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Figure 1.3: The orbits of stars within the central 1.0 × 1.0 arcseconds of our
Galaxy. In the background, the central portion of a diffraction-limited image
taken in 2006 is displayed. While every star in this image has been seen to move
over the past 12 years, estimates of orbital parameters are only possible for the
seven stars that have had significant curvature detected. The annual average
positions for these seven stars are plotted as colored dots, which have increasing
color saturation with time. Also plotted are the best fitting simultaneous orbital
solutions. These orbits provide the best evidence yet for a supermassive black
hole, which has a mass of 3.7 million times the mass of the Sun. The image
was created by Andrea Ghez and her research team at UCLA, from data sets
obtained with the W. M. Keck Telescopes, and is available at http://www.
astro.ucla.edu/~ghezgroup/gc/pictures/.

There seems to be consensus [32, 46, 64] that the two most convincing su-
permassive black hole candidates are the galactic nuclei of NGC 4258 and of
our own Milky Way.

There have been suggestions for existence for an intermediate-mass black
hole orbiting three light-years from Sagittarius A*. This black hole of 1,300 solar
masses is within a cluster of seven stars, possibly the remnant of a massive star
cluster that has been stripped down by the Galactic Centre [42].

A compilation of a list of black hole candidates, some very tentative, can be
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found at http://www.johnstonsarchive.net/relativity/bhctable.html, see
also [77].

Let us close this section by pointing out the review paper [6] which discusses
both theoretical and experimental issues concerning primordial black holes.

1.2 The Schwarzschild solution and its extensions

Stationary solutions are of interest for a variety of reasons. As models for com-
pact objects at rest, or in steady rotation, they play a key role in astrophysics.
They are easier to study than non-stationary systems because stationary solu-
tions are governed by elliptic rather than hyperbolic equations. Further, like in
any field theory, one expects that large classes of dynamical solutions approach
a stationary state in the final stages of their evolution. Last but not least,
explicit stationary solutions are easier to come by than dynamical ones.

The simplest stationary solutions describing compact isolated objects are
the spherically symmetric ones. A theorem due to Birkhoff shows that in the
vacuum region any spherically symmetric metric, even without assuming sta-
tionarity, belongs to the family of Schwarzschild metrics, parameterized by a
mass parameter m:

g = −V 2dt2 + V −2dr2 + r2dΩ2 , (1.2.1)
V 2 = 1− 2m

r , t ∈ R , r ∈ (2m,∞) . (1.2.2)

Here dΩ2 denotes the metric of the standard 2-sphere,

dΩ2 = dθ2 + sin2 θdϕ2 .

Throughout this section we will assume

m > 0 ,

because m < 0 leads to metrics which are “nakedly singular”, in the following
sense: for m < 0, on each space-like surface {t = const} the set {r = 0}
can be reached along curves of finite length. But we have (see, e.g., http:
//grtensor.phy.queensu.ca/NewDemo)

RαβγδR
αβγδ =

48m2

r6
, (1.2.3)

which shows that the geometry is singular there.
One of the first features one notices is that the metric (1.2.1) is singular as

r = 2m is approached. It turns out that this singularity is related to a poor
choice of coordinates (one talks about “a coordinate singularity”); the simplest
way to see it is to replace t by a new coordinate v defined as

v = t + f(r) , f ′ =
1

V 2
. (1.2.4)

Now,

f ′ =
1

1− 2m
r

=
r

r − 2m
=

r − 2m + 2m

r − 2m
= 1 +

2m

r − 2m
, (1.2.5)
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leading to
v = t + r + 2m ln(r − 2m) .

This brings g to the form

g = −(1− 2m

r
)dv2 + 2dvdr + r2dΩ2 . (1.2.6)

We have det g = −r4 sin2 θ, with all coefficients of g smooth, which shows that
g is a well defined Lorentzian metric on the set

v ∈ R , r ∈ (0,∞) . (1.2.7)

More precisely, (1.2.6)-(1.2.7) is an analytic extension of the original space-time
(1.2.1).

It is easily seen that the region {r ≤ 2m} for the metric (1.2.6) is a black
hole region, in the sense that

observers, or signals, can enter this region, but can never leave it. (1.2.8)

In order to see that, recall that observers in general relativity always move
on future directed timelike curves, that is, curves with timelike future directed
tangent vector. For signals the curves are causal future directed, these are
curves with timelike or null future directed tangent vector. Let, then, γ(s) =
(v(s), r(s), θ(s), ϕ(s)) be such a timelike curve, for the metric (1.2.6) the time-
likeness condition g(γ̇, γ̇) < 0 reads

−(1− 2m

r
)v̇2 + 2v̇ṙ + r2(θ̇2 + sin2 θϕ̇2) < 0 .

This implies

v̇
(
− (1− 2m

r
)v̇ + 2ṙ

)
< 0 .

It follows that v̇ does not change sign on a timelike curve. The usual choice
of time orientation corresponds to v̇ > 0 on future directed curves (compare
(1.2.4)), leading to

−(1− 2m

r
)v̇ + 2ṙ < 0 .

For r ≤ 2m the first term is non-negative, which enforces ṙ < 0 on all future
directed timelike curves in that region. Thus, r is a strictly decreasing function
along such curves, which implies that future directed timelike curves can cross
the hypersurface {r = 2m} only if coming from the region {r > 2m}. This
motivates the name black hole event horizon for {r = 2m, v ∈ R}. The same
conclusion applies for causal curves: it suffices to approximate a causal curve
by a sequence of timelike ones.

Note that we could have chosen a time orientation in which future directed
timelike curves satisfy v̇ < 0. The resulting space-time is then called a white
hole space-time, with {r = 2m} being a white hole event horizon, which can
only be crossed by those future directed causal curves which originate in the
region {r < 2m}.
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From (1.2.6) one easily finds the inverse metric:

gµν∂µ∂ν = 2∂v∂r + (1− 2m

r
)∂2

r + r−2∂2
θ + r−2 sin−2 θ∂2

ϕ . (1.2.9)

In particular
0 = gvv = g(∇v,∇v) ,

which implies that the integral curves of

∇v = ∂r

are null, affinely parameterised geodesics. This is at the origin of the coordinate
system (v, r, θ, ϕ).

We also have
g(∇r,∇r) = grr = 1− 2m

r
, (1.2.10)

so that the the surface r = 2m is null. It is reached by all the radial null
geodesics v = const, θ = const′, ϕ = const′′ in finite affine time.

An alternative justification of the property, that the horizon {r = 2m} cannot
be reached by future directed timelike curves starting in the region {r < 2m}, is
provided by (1.2.10), which shows that r is a time function in {r < 2m}.

1.2.1 The Kruskal-Szekeres extension

The transition from (1.2.1) to (1.2.6) is not the end of the story, as further
extensions are possible, which will be clear from the calculations that we will
do shortly. For the metric (1.2.1) a maximal analytic extension has been found
independently by Kruskal [33], Szekeres [69], and Fronsdal [20]; for some obscure
reason Fronsdal is almost never mentioned in this context. This extension is
visualised5 in Figure 1.4. The region I there corresponds to the space-time
(1.2.1), while the extension just constructed corresponds to the regions I and
II.

The general construction, for spherically symmetric metrics, proceeds as
follows: we introduce another coordinate u defined by changing a sign in (1.2.4)

u = t− f(r) , f ′ =
1

V 2
, (1.2.11)

leading to
u = t− r − 2m ln(r − 2m) .

We could now replace (t, r) by (u, r), obtaining an extension of the exterior
region I of Figure 1.4 into the “white hole” region IV . We leave that extension
as an exercise for the reader, and we pass to the complete extension, which
proceeds in two steps. First, we replace (t, r) by (u, v). We note that

V du = V dt− 1
V

dr , V dv = V dt +
1
V

dr ,

5I am grateful to J.-P. Nicolas for allowing me to use his electronic figures [54].
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r = constant > 2M

r = 2M

r = 2M

r = constant < 2M

t = constant

Singularity (r = 0)

X

T
Singularity (r = 0)

r = constant < 2M

r = 2M

r = 2M

r = constant > 2M

I

II

III

IV

Figure 1.4: The Kruskal-Szekeres extension of the Schwarzschild solution.

which gives

V dt =
V

2
(du + dv) ,

1
V

dr =
V

2
(dv − du) .

Inserting this into (1.2.1) brings g to the form

g = −V 2dt2 + V −2dr2 + r2dΩ2

=
V 2

4

(
− (du + dv)2 + (du− dv)2

)
+ r2dΩ2

= −V 2du dv + r2dΩ2 . (1.2.12)

The metric so obtained is still degenerate at {V = 0}. The desingularisation is
now obtained by setting

û = − exp(−cu) , v̂ = exp(cv) , (1.2.13)

with an appropriately chosen c: since

dû = c exp(−cu) du , dv̂ = c exp(cv)dv ,

we obtain

V 2du dv =
V 2

c2
exp(−c(−u + v))dû dv̂

=
V 2

c2
exp(−2cf(r))dû dv̂ .

In the Schwarzschild case this reads

V 2

c2
exp(2cf(r)) =

r − 2m

c2r
exp(−2c(r + 2m ln(r − 2m)))

=
exp(−2cr)

c2r
(r − 2m) exp(−4mc ln(r − 2m)) ,
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and with the choice
4mc = 1

the term r − 2m cancels out, leading to a factor in front of dû dv̂ which has no
zeros for r 6= 0 near. Thus, the desired coordinate transformation is

û = − exp(−cu) = − exp( r−t
4m )

√
r − 2m , (1.2.14)

v̂ = exp(cv) = exp( r+t
4m )

√
r − 2m , (1.2.15)

with g taking the form

g = −V 2du dv + r2dΩ2

= −16m2 exp(− r
2m)

r
dû dv̂ + r2dΩ2 . (1.2.16)

Here r should be viewed as a function of û and v̂ defined implicitly by the
equation

−ûv̂ = exp(
r

2m
)(r − 2m)

︸ ︷︷ ︸
=:G(r)

. (1.2.17)

Indeed, we have
(

exp(
r

2m
)(r − 2m)

)′
=

r

2m
exp(

r

2m
) > 0 ,

which shows that the function G defined at the right-hand-side of (1.2.17) is
a smooth strictly increasing function of r > 0. We have G(0) = −2m, and G
tends to infinity as r does, so G defines a bijection of (0,∞) with (−2m,∞).
The implicit function theorem guarantees smoothness of the inverse G−1, and
hence the existence of a smooth function r = G−1(−ûv̂) solving (1.2.17) on the
set ûv̂ ∈ (−∞, 2m).

We have det g = − exp(− r
m

)

(16)2m4 r2 sin2 θ, with all coefficients of g smooth, which
shows that (1.2.16) defines a smooth Lorentzian metric on the set

û, v̂ ∈ R , r > 0 . (1.2.18)

This is the Kruszkal-Szekeres extension of the original space-time (1.2.1). Fig-
ure 1.4 gives a representation of the extended space-time in coordinates

X = (v̂ − û)/2 , T = (v̂ + û)/2 .

Since (1.2.3) shows that the so-called Kretschmann scalar RαβγδR
αβγδ diverges

as r−6 when r approaches zero, we conclude that the metric cannot be extended
across the set r = 0, at least in the class of C2 metrics.

Let us discuss some features of Figure 1.4:

1. The singular set r = 0 corresponds to the spacelike hyperboloids

(X2 − T 2)|r=0 = −ûv̂|r=0 = 2m > 0 .
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2. More generally, the sets r = const are hyperboloids X2 − T 2 = const′,
which are timelike in the regions I and III (since X2 − T 2 < 0 there),
and which are spacelike in the regions II and IV .

3. The vector field ∇T satisfies

g(∇T,∇T ) = g](dT, dT ) =
1
4
g](dû + dv̂, dû + dv̂) =

1
2
g](dû, dv̂) < 0 ,

which shows that T is a time coordinate. Similarly X is a space-coordinate,
so that Figure 1.4 respects our implicit convention of representing time
along the vertical axis and space along the horizontal one.

4. The map
(û, v̂) → (−û,−v̂)

is clearly an isometry, so that the region I is isometric to region III, and
region II is isometric to region IV . In particular the extended manifold
has two asymptotically flat regions, the original region I, and region III
which is an identical copy I.

5. The hypersurface t = 0 from the region I corresponds to û = −v̂ > 0,
equivalently it is the subset X > 0 of the hypersurface T = 0. This can be
smoothly continued to negative X, which corresponds to a second copy
of this hypersurface. The resulting geometry is often referred to as the
Einstein-Rosen bridge. It is instructive to do the continuation directly
using the Riemannian metric γ induced by g on t = 0:

γ =
dr2

1− 2m
r

+ r2dΩ2 , r > 2m .

A convenient coordinate ρ is given by

ρ =
√

r2 − 4m2 ⇐⇒ r =
√

ρ2 + 4m2 .

This brings γ to the form

γ =
(
1 +

2m√
ρ2 + 4m2

)
dρ2 + (ρ2 + 4m2)dΩ2 , (1.2.19)

which can be smoothly continued from the original range ρ > 0 to ρ ∈ R.
Equation (1.2.19) further exhibits explicitly asymptotic flatness of both
asymptotic regions ρ →∞ and ρ → −∞. Indeed,

g ∼ dρ2 + ρ2dΩ2

to leading order, for large |ρ|, which is the flat metric in radial coordinates
with radius |ρ|.

6. In the Kruskal-Szekeres coordinate system the Killing vector field K = ∂t

takes the form

K = ∂t =
∂û

∂t
∂û +

∂v̂

∂t
∂v̂

= −û∂û + v̂∂v̂ . (1.2.20)
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More precisely, the Killing vector field ∂t defined on the original Schwarzschild
region extends to a Killing vector field X defined throughout the Kruskal-
Szekeres manifold by the right-hand-side of (1.2.20).

We note that K is tangent to the level sets of û or v̂ at ûv̂ = 0, and
therefore is null there. Moreover, it vanishes at the sphere û = v̂ = 0,
which is called the bifurcation surface of a bifurcate Killing horizon. The
justification of this last terminology should be clear from Figure 1.4. Quite
generally, a null hypersurface to which a Killing vector is tangent, and null
there, is called a Killing horizon. Therefore the union {ûv̂ = 0} of the
black hole horizon {û = 0} and the white hole event horizon {v̂ = 0} can
be written as the union of four Killing horizons and of their bifurcation
surface.

The bifurcate horizon structure, as well as the formula (1.2.20), are rather
reminiscent of what happens when considering the Killing vector t∂x+x∂t

in Minkowski space-time; this is left as an exercice to the reader.

The Kruskal-Szekeres extension is inextendible, which can be proved as fol-
lows: first, (1.2.3) shows that the Kretschmann scalar RαβγδR

αβγδ diverges as
r approaches zero. This implies that no C2 extension of the metric is possible
across the set {r = 0}. Next, an analysis of the geodesics of the Kruskal-
Szekeres metric shows that all (maximally extended) geodesics which do not
approach {r = 0} are complete. This implies inextendibility.

Nevertheless, it should be realised that the exterior Schwarzschild space-
time (1.2.1) admits an infinite number of non-isometric vacuum extensions,
even in the class of maximal, analytic, simply connected ones: indeed, let S
be any two-dimensional closed submanifold entirely included in, say, the black-
hole region of the Kruskal-Szekeres manifold (M , g), such that M \ S is not
simply connected. (An example is given by the sphere {û = v̂ = 0}.) Then, for
any such S the universal covering manifold (MS , ĝ) of (M \ S, g|M\S) has the
claimed properties.

It follows from what has been said that the Kruskal-Szekeres extension is
singled out by being maximal in the vacuum, analytic, simply connected class,
with all maximally extended geodesics γ either complete, or with the curvature
scalar RαβγδR

αβγδ diverging along γ in finite affine time.

1.2.2 Other coordinate systems, higher dimensions

A convenient coordinate system for the Schwarzschild metric is given by the so-
called isotropic coordinates: introducing a new radial coordinate r̃, implicitly
defined by the formula

r = r̃
(
1 +

m

2r̃

)2
, (1.2.21)

with a little work one obtains

gm =
(

1 +
m

2|x|
)4

(
3∑

1=1

(dxi)2
)
−

(
1−m/2|x|
1 + m/2|x|

)2

dt2 , (1.2.22)
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where xi are coordinates on R3 with |x| = r̃. Those coordinates show explicitly
that the space-part of the metric is conformally flat (as follows from spherical
symmetry).

The Schwarzschild space-time has the curious property of possessing flat
spacelike hypersurfaces. They appear miraculously when introducing the Painlevé–
Gullstrand coordinates [22, 36, 57]: Starting from the standard coordinate sys-
tem of (1.2.1) one introduces a new time τ via the equation

t = τ − 2r

√
2m

r
+ 4m arctanh

(√
2m

r

)
, (1.2.23)

so that

dt = dτ −
√

2m/r

1− 2m/r
dr .

This leads to

g = −
[
1− 2m

r

]
dτ2 + 2

√
2m

r
dr dτ + dr2 + r2

[
dθ2 + sin2 θdφ2

]
,

or, passing from spherical to standard coordinates,

g = −
[
1− 2m

r

]
dτ2 + 2

√
2m

r
dr dτ + dx2 + dy2 + dz2 . (1.2.24)

(Note that each such slice has zero ADM mass.)
An important tool for the PDE analysis of space-times is provided by wave

coordinates. In spherical coordinates associated to wave coordinates (t, x̂, ŷ, ẑ),
with radius function r̂ =

√
x̂2 + ŷ2 + ẑ2, the Schwarzschild metric takes the

form [38, 68]

g = − r̂ −m

r̂ + m
dt2 +

r̂ + m

r̂ −m
dr̂2 + (r̂ + m)2dΩ2 . (1.2.25)

This is clearly obtained by replacing r with r̂ = r −m in (1.2.1).

In order to verify the harmonic character of the coordinates associated with (1.2.25),
consider a general spherically symmetric static metric of the form

g = −e2αdt2 + e2βdr2 + e2γr2dΩ2

= −e2αdt2 + e2βdr2 + e2γ(δijdxidxj − dr2)

= −e2αdt2 +
(
e2γδij + (e2β − e2γ)

xixj

r2

)
dxidxj , (1.2.26)

where α, β and γ depend only upon r. We need to calculate

2gx
α =

1√
|det g|∂µ(

√
| det g|gµν∂νxα) =

1√
| det g|∂µ(

√
| det g|gµα) .

Clearly g0i = 0, which makes the calculation for x0 = t straightforward:

2gt =
1√
| det g|∂µ(

√
| det g|gµ0) =

1√
| det g|∂t(

√
| det g|g00) = 0 ,
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as nothing depends upon t. For 2gx
i we have to calculate

√
| det g| and gµν . For

the latter, it is clear that g00 = −e−2α, while by symmetry considerations we must
have

gij = e−2γ
(
δij + χ

xixj

r2

)
,

for a function χ to be determined. The equation

δj
i = gjµgµi = gjkgki = e−2γ

(
δjk + χ

xjxk

r2

)(
e2γδki + (e2β − e2γ)

xkxi

r2

)

= δj
i + e−2γ

(
χe2γ + e2β − e2γ + χ(e2β − e2γ)

)xixj

r2

= δj
i + e−2γ

(
e2β − e2γ + χe2β

)xixj

r2

gives χ = e2(γ−β) − 1, and finally

gij = e−2γδij + (e−2β − e−2γ)
xixj

r2
.

Next,
√
|det g| is best calculated in a coordinate system in which the vector (x, y, z)

is aligned along the x axis, (x, y, z) = (r, 0, 0). Then (1.2.26) reads, in space-time
dimension n + 1,

g =




−e2α 0 0 · · · 0
0 e2β 0 · · · 0
0 0 e2γ · · · 0

0 0
...

. . . 0
0 0 0 · · · e2γ




which implies
det g = −e2(α+β)+2(n−1)γ ,

still at (x, y, z) = (r, 0, 0). Spherical symmetry implies that this equality holds
everywhere.

In order to continue, it is convenient to set

φ = eα+β+(n−3)γ ψ = eα+β+(n−1)γ(e−2β − e−2γ) .

We then have
√
| det g|2gx

i = ∂µ(
√
| det g|gµi) = ∂j(

√
| det g|gji)

= ∂j

(
eα+β+(n−3)γ︸ ︷︷ ︸

φ

δij + eα+β+(n−1)γ(e−2β − e−2γ)︸ ︷︷ ︸
ψ

xixj

r2
)
)

= (φ′ + ψ′)
xi

r
+ ψ∂j

(xixj

r2

)
=

(
φ′ + ψ′ +

(n− 1)
r

ψ
)xi

r
.

(1.2.27)

For the metric (1.2.25) we have

e2α =
r̂ −m

r̂ + m
, β = −α , e2γ r̂2 = (r̂ + m)2 ,

so that

φ = 1 , ψ = e2γ × e2α − 1 =
(r̂ + m)2

r̂2
× r̂ −m

r̂ + m
− 1 = −m2

r̂2
,
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and if n = 3 we obtain 2gx
µ = 0, as desired.

More generally, consider the Schwarzschild metric in any dimension n ≥ 3,

gm = −
(

1− 2m

rn−2

)
dt2 +

dr2

1− 2m
rn−2

+ r2dΩ2 , (1.2.28)

where, as usual, dΩ2 is the round unit metric on Sn−1. In order to avoid confusion
we keep the symbol r for the coordinate appearing in (1.2.28), and rewrite (1.2.26)
as

g = −e2αdt2 + e2βdr̂2 + e2γ r̂2dΩ2 , (1.2.29)

It follows from (1.2.27) that the harmonicity condition reads

0 =
d(φ + ψ)

dr̂
+

(n− 1)
r̂

ψ =
d(φ + ψ)

dr̂
+

(n− 1)
r̂

(ψ + φ)− (n− 1)
r̂

φ . (1.2.30)

Equivalently,
d[r̂n−1(φ + ψ)]

dr̂
= (n− 1)r̂n−2φ . (1.2.31)

Transforming r to r̂ in (1.2.54) and comparing with (1.2.29) we find

eα =

√
1− 2m

rn−2
, eβ = e−α dr

dr̂
, eγ =

r

r̂
.

Note that φ + ψ = eα−β+(n−1)γ ; chasing through the definitions one obtains φ =
dr
dr̂

(
r
r̂

)n−3

, leading eventually to the following form of (1.2.31)

d

dr

[
rn−1

(
1− 2m

rn−2

)dr̂

dr

]
= (n− 1)rn−3r̂ .

Introducing x = 1/r, one obtains an equation with a Fuchsian singularity at x = 0:

d

dx

[
x3−n

(
1− 2mxn−2

) dr̂

dx

]
= (n− 1)x1−nr̂ .

The characteristic exponents are −1 and n− 1 so that, after matching a few lead-
ing coefficients, the standard theory of such equations provides solutions with the
behavior

r̂ = r − m

(n− 2)rn−3
+

{
m2

4 r−3 ln r + O(r−5 ln r), n = 4;
O(r5−2n), n ≥ 5.

.

Somewhat surprisingly, we find logarithms of r in an asymptotic expansion of r̂ in
dimension n = 4. However, for n ≥ 5 there is a complete expansion of r̂ in terms of
inverse powers of r, without any logarithmic terms in those dimensions.

As already hinted to in (1.2.28), higher dimensional counterparts of metrics
(1.2.1) have been found by Tangherlini [70]. In space-time dimension n+1, the
metrics take the form (1.2.1) with

V 2 = 1− 2m

rn−2
, (1.2.32)

and with dΩ2 — the unit round metric on Sn−1. The parameter m is the
Arnowitt-Deser-Misner mass in space-time dimension four, and is proportional
to that mass in higher dimensions. Assuming again m > 0, a maximal analytic
extension can be constructed by a simple modification of the calculations above,
leading to a space-time with global structure identical to that of Figure 1.8
except for the replacement 2M → (2M)1/(n−2) there.
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Remark 1.2.1 For further reference we present a general construction of Walker [74].
We summarise the calculations already done: the starting point is a metric of the
form

g = −Fdt2 + F−1dr2 + h , (1.2.33)

with F = F (r), where h is a metric on an (n − 2)-dimensional manifold (it is
convenient to write F for V 2, as the sign of F did not play any role; similarly the
metric h was irrelevant for the calculations we did above). We assume that F is
defined for r in a neighborhood of r = r0, at which F vanishes, with a simple zero
there. Equivalently,

F (r0) = 0 , F ′(r0) 6= 0 .

Defining

u = t− f(r) , v = t + f(r) , f ′ =
1
F

, (1.2.34)

û = − exp(−cu) , v̂ = exp(cv) , (1.2.35)

one is led to the following form of the metric

g = −F

c2
exp(−2cf(r))dû dv̂ + h . (1.2.36)

Since F has a simple zero, it factorizes as

F (r) = (r − r0)H(r) ,

for a function H which has no zeros in a neighborhood of r0. This follows immedi-
ately from the formula

F (r)− F (r0) =
∫ 1

0

dF (t(r − r0) + r0)
dt

dt = (r − r0)
∫ 1

0

F ′(t(r − r0) + r0) dt .

(1.2.37)
Now,

1
F (r)

=
1

H(r0)(r − r0)
+

1
F (r)

− 1
H(r0)(r − r0)

=
1

H(r0)(r − r0)
+

H(r0)−H(r)
H(r)H(r0)(r − r0)

.

An analysis of H(r)−H(r0) as in (1.2.37) followed by integration lead subsequently
to

f(r) =
1

F ′(r0)
ln |r − r0|+ f̂(r) ,

for some function f̂ which is smooth near r0. Inserting all this into (1.2.36) with
c = F ′(r0)/2 gives

g = ∓ 4H(r)
(F ′(r0))2

exp(−f̂(r)F ′(r0))dû dv̂ + h , (1.2.38)

with a positive sign if we started in the region r > r0, and negative otherwise.
The function r is again implicitly defined by the equation

ûv̂ = ∓(r − r0) exp(f̂(r)F ′(r0)) .

The right-hand-side has a derivative which equals ∓ exp(f̂(r0)/F ′(r0)) 6= 0 at r0,
and therefore this equation defines a smooth function r = r(ûv̂) for r near r0 by
the implicit function theorem.
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The above discussion applies to F which are of Ck differentiability class, with
some losses of differentiability. Indeed, (1.2.38) provides an extension of Ck−2 differ-
entiability class, which leads to the restriction k ≥ 2. However, the implicit function
argument just given requires h to be differentiable, so we need in fact k ≥ 3 for a
coherent analysis. Note that for real analytic F ’s the extension so constructed is
real analytic; this follows from the analytic version of the implicit function theorem.

Supposing we start with a region where r > r0, with F positive there. Then
we are in a situation reminiscent of that we encountered with the 3+1 dimensional
Schwarzschild metric, where a single region of the type I in Figure 1.4 leads to
the attachment of three new regions to the initial manifold, through “a lower left
horizon, and an upper left horizon, meeting at a corner”. On the other hand, if we
start with r < r0 and F is negative there, we are in the situation of Figure 1.4 where
a region of type II is extended through “an upper left horizon, and an upper right
horizon, meeting at a corner”. The reader should have no difficulties examining all
remaining possibilities.

The function f of (1.2.34) for a (4+1)–dimensional Schwarzschild-Tangherlini
solution can be calculated to be

f = r +
√

2m ln
(r −√2m

r +
√

2m

)
.

A direct calculation leads to

g = −8m(r +
√

2m)2

r2
exp(−r/2m) dû dv̂ + dΩ2 . (1.2.39)

One can similarly obtain (non-very-enlightening) explicit expressions in dimen-
sion (5 + 1).

The isotropic coordinates in higher dimensions lead to the following form of
the Schwarzschild-Tangherlini metric [60]:

gm =
(

1 +
m

2|x|n−2

) 4
n−2

(
n∑

1=1

(dxi)2
)
−

(
1−m/2|x|n−2

1 + m/2|x|n−2

)2

dt2 . (1.2.40)

The radial coordinate |x| in (1.2.40) is related to the radial coordinate r of
(1.2.32) by the formula

r =
(

1 +
m

2|x|n−2

) 2
n−2

|x| .

It may be considered unsatisfactory that the function r appearing in the
globally regular form of the metric (1.2.16) is not given by an explicit elemen-
tary function of the coordinates. Here is a an explicit form of the extended
Schwarzschild metric due to Israel [26]6

g = −8m

[
dxdy +

y2

xy + 2m
dx2

]
− (xy + 2m)2dΩ2 . (1.2.41)

6The Israel coordinates have been found independently in [58], see also [31].
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The coordinates (x, y) are related to the standard Schwarzschild coordinates
(t, r) as follows:

r = xy + 2m , (1.2.42)
t = xy + 2m(1 + ln |y/x|) , (1.2.43)

|x| =
√
|r − 2m| exp

(
r − t

4m

)
, (1.2.44)

|y| =
√
|r − 2m| exp

(
t− r

4m

)
. (1.2.45)

In higher dimensions one also has an explicit, though again not very en-
lightening, manifestly globally regular form of the metric [35], in space-time
dimension n + 1:

ds2 = −2
w2(−(r)−n+22n+1mn+1 + 4m2((n + 1)(2m− r) + 3r − 4m)

m(2m− r)2
dU2

+8mdUdw + r2dΩ2
n−1 , (1.2.46)

where r ≥ 0 is the function

r(U,w) ≡ 2m + (n− 2)Uw, (1.2.47)

while dΩ2
n−1 is the metric of a unit round n− 1 sphere.

1.2.3 Some geodesics

The geodesics in the Schwarzschild metric have been studied extensively in the
literature, so we will only make a few general comments about those.

First, we already encountered a family of outgoing and incoming radial null
geodesics t∓ (r + 2m ln(r − 2m)) = const.

Next, each Killing vector X produces a constant of motion g(X, γ̇) along an
affinely parameterised geodesic. So we have a conserved energy

E := g(∂t, γ̇) = −(1− 2m

r
)ṫ ,

and a conserved angular momentum ω

ω := g(∂ϕ, γ̇) = r2ϕ̇ .

Yet another constant of motion arises from the length of γ̇,

g(γ̇, γ̇) = −(1− 2m

r
)ṫ2 +

ṙ2

1− 2m
r

+ r2(θ̇2 +sin2 θϕ̇2) = ε ∈ {−1, 0, 1} . (1.2.48)

To simplify things somewhat, let us show that all motions are planar. One way of
doing this is to write the equations explicitly. The Lagrangean for geodesics reads:

L =
1
2

(
V 2

(
dt

ds

)2

− V −2

(
dr

ds

)2

− r2

(
dθ

ds

)2

− r2 sin2 θ

(
dϕ

ds

)2
)

.
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Those Euler-Lagrange equations which are not already covered by the conservation
laws read:

d

ds

(
V −2 dr

ds

)
= V ∂rV

(
dt

ds

)2

+ 2r

[(
dθ

ds

)2

+ sin2 θ

(
dϕ

ds

)2
]

, (1.2.49)

d

ds

(
r2 dθ

ds

)
= r2 sin θ cos θ

(
dϕ

ds

)2

. (1.2.50)

Consider any geodesic, and think of the coordinates (r, θ, ϕ) as spherical coordinates
on R3. Then the initial position vector (which is, for obvious reasons, assumed not
to be the origin) and the initial velocity vector, which is assumed not to be radial
(otherwise the geodesic will be radial, and the claim follows) define a unique plane
in R3. We can then choose the spherical coordinates so that this plane is the plane
θ = π/2. We then have θ(0) = π/2 and θ̇(0) = 0, and then θ(s) ≡ π/2 is a solution
of (1.2.50) satisfying the initial values. By uniqueness this is the solution.

So, without loss of generality we can assume sin θ = 1 throughout the mo-
tion, from (1.2.48) we then obtain the following ODE for r(s);

ṙ2 = E 2 + (1− 2m

r
)(ε− ω2

r2
) . (1.2.51)

The radial part of the geodesic equation can be obtained by calculating di-
rectly the Christoffel symbols of the metric. A more efficient way is to use the
variational principle for geodesics, with the Lagrangean L = g(γ̇, γ̇) — this
can be read off from the middle term in (1.2.48). But the reader should easily
convince herself that, at this stage, the desired equation can be obtained by
differentiating (1.2.51) with respect to s, obtaining

2
d2r

ds2
=

d

dr

(
E 2 + (1− 2m

r
)(ε− ω2

r2
)
)

. (1.2.52)

We wish to point out the existence of a striking class of null geodesics for
which r(s) = const. It follows from (1.2.52), and from uniqueness of solutions
of the Cauchy problem for ODE’s, that such a curve will be a null geodesic
provided that the right-hand-sides of (1.2.51) and of (1.2.52) (with ε = 0)
vanish:

E 2 − (1− 2m

r
)
ω2

r2
= 0 =

2ω2

r3
(−r + 3m) . (1.2.53)

Simple algebra shows now that the curves

s 7→ γ±(s) = (t = s, r = 3m, θ = π/2, ϕ = ±33/2m−1s) ,

are thus null geodesics spiraling on the timelike cylinder {r = 3m}.

1.2.4 The Flamm paraboloid

We write again the Schwarzschild metric in dimension n + 1,

gm = −
(

1− 2m

rn−2

)
dt2 +

dr2

1− 2m
rn−2

+ r2dΩ2 , (1.2.54)
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where, as usual, dΩ2 is the round unit metric on Sn−1. Because of spherical
symmetry, the geometry of the t = const slices can be realised by an embedding
into (n + 1)–dimensional Euclidean space. If we set

g̊ = dz2 + (dx1)2 + . . . + (dxn)2 = dz2 + dr2 + r2dΩ2 ,

the metric h induced by g̊ on the the surface z = z(r) reads

h =
((dz

dr

)2
+ 1

)
dr2 + r2dΩ2 .

This will coincide with the space part of (1.2.54) if we require that

dz

dr
= ±

√
2m

rn−2 − 2m
.

The equation can be explicitly integrated in dimensions n = 3 and 4 in terms
of elementary functions, leading to

z = z0 ±
√

2m×
{

2
√

r − 2m, r > 2m, n = 3,
ln(r +

√
r2 − 2m), r >

√
2m, n = 4.

The positive sign corresponds to the usual black hole exterior, while the negative
sign corresponds to the second asymptotically flat region, on the “other side”
of the Einstein-Rosen bridge. Solving for r(z), a convenient choice of z0 leads
to

r =
{

2m + z2/8m, n = 3,√
2m cosh(z/

√
2m), n = 4.

In dimension n = 3 one obtains a paraboloid, as first noted by Flamm. The
embeddings are visualized in Figures 1.5 and 1.6.

The qualitative behavior in dimensions n ≥ 5 is somewhat different, as then
z(r) asymptotes to a finite value as r tends to infinity. The embeddings in
n = 5 are visualized in Figure 1.7; in that dimension z(r) can be expressed in
terms of elliptic functions, but the final formula is not very illuminating.

1.2.5 Conformal Carter-Penrose diagrams

Consider a metric with the following product structure:

g = grr(t, r)dr2 + 2grt(t, r)dtdr + gtt(t, r)dr2

︸ ︷︷ ︸
=:2g

+hAB(t, r, xA)dxAdxB

︸ ︷︷ ︸
=:h

, (1.2.55)

where h is Riemannian metric in dimension n− 1. Then any causal vector for
g is also a causal vector for 2g, and drawing light-cones for 2g gives a good idea
of the causal structure of (M , g). We have already done that in Figure 1.4 to
depict the black hole character of the Kruskal-Szekeres space-time.

Now, it is not too difficult to prove that any two-dimensional metric can be
brought locally to the form

2g = 2guv(u, v)dudv = 2guv(−dt2 + dr2) (1.2.56)

in which the light-cones have slopes one, just as in Minkowski space-time. When
using such coordinates, it is sufficient to draw their domain of definition to
visualise the global causal structure of the space-time.
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Figure 1.5: Isometric embedding of the space-geometry of an n = 3 dimensional
Schwarzschild black hole into four-dimensional Euclidean space, near the throat
of the Einstein-Rosen bridge r = 2m, with 2m = 1 (left) and 2m = 6 (right).
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Figure 1.6: Isometric embedding of the space-geometry of an n = 4 dimensional
Schwarzschild black hole into five-dimensional Euclidean space, near the throat
of the Einstein-Rosen bridge r = (2m)1/2, with 2m = 1 (left) and 2m = 6
(right). The extents of the vertical axis are the same as those in Figure 1.5.
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Figure 1.7: Isometric embedding of the space-geometry of a (5+1)–dimensional
Schwarzschild black hole into six-dimensional Euclidean space, near the throat
of the Einstein-Rosen bridge r = (2m)1/3, with 2m = 2. The variable along the
vertical axis asymptotes to ≈ ±3.06 as r tends to infinity. The right picture is
a zoom to the centre of the throat.

Exercice 1.2.2 Prove (1.2.56). [Hint: use coordinates associated with right-going
and left-going null geodesics.]

The above are the first two-ingredients behind the idea of conformal Carter-
Penrose diagrams. The last thing to do is to bring any infinite domain of
definition of the (u, v) coordinates to a finite one. An essentially identical
coordinate transformation works here: Indeed, let ū and v̄ be defined by the
equations

tan ū =
û√
2m

, tan v̄ =
v̂√
2m

,

where v̂ and û have been defined in (1.2.14)-(1.2.15). Using

dû =
√

2m

cos2 ū
dū , dv̂ =

√
2m

cos2 v̄
dv̄ ,

the Schwarzschild metric (1.2.16) takes the form

g = −16m2 exp(− r
2m)

r
dû dv̂ + r2dΩ2

= −32m3 exp(− r
2m)

r cos2 ū cos2 v̄
dū dv̄ + r2dΩ2 . (1.2.57)

Introducing new time- and space-coordinates t̄ = (ū + v̄)/2, x̄ = (ū − v̄)/2, so
that

ū = t̄− x̄ , v̄ = t̄ + x̄ ,

one obtains a more familiar-looking form

g = −32m3 exp(− r
2m)

r cos2 ū cos2 v̄
(−dt̄2 + dx̄2) + r2dΩ2 .
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This is regular except at cos ū = 0, and cos ū = 0, and r = 0. The first set
corresponds to the straight lines ū = t̄ − x̄ ∈ {±π/2}, while the second is the
union of the lines v̄ = t̄ + x̄ ∈ {±π/2}.

The analysis of {r = 0} requires some work: recall that r = 0 corresponds
to ûv̂ = 2m, which is equivalent to

tan(ū) tan(v̄) = 1 .

Using the formula

tan(ū + v̄) =
tan ū + tan v̄

1− tan ū tan v̄

we obtain “tan(ū + v̄) = ±∞” or, more precisely,

ū + v̄ = 2t̄ = ±π/2 .

So the Kruskal-Szekeres metric is conformal to a smooth Lorentzian metric on
C × S2, where C is the set of Figure 1.8.
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Figure 1.8: The Carter-Penrose diagram5 for the Kruskal-Szekeres space-time
with mass M . There are actually two asymptotically flat regions, with corre-
sponding event horizons defined with respect to the second region. Each point
in this diagram represents a two-dimensional sphere, and coordinates are cho-
sen so that light-cones have slopes plus minus one. Regions are numbered as in
Figure 1.4.

1.3 Some general notions

Before continuing some general notions are in order. A Killing field, by defini-
tion, is a vector field the local flow of which preserves the metric. One of the
features of the metric (1.2.1) is its stationarity, with Killing vector field X = ∂t:
A space–time is called stationary if there exists a Killing vector field X which
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approaches ∂t in the asymptotically flat region (where r goes to ∞, see Sec-
tion 2.3 below for precise definitions) and generates a one parameter groups of
isometries. A space–time is called static if it is stationary and if the stationary
Killing vector X is hypersurface-orthogonal, i.e.

X[ ∧ dX[ = 0 ,

where
X[ = Xµdxµ = gµνX

νdxµ .

Exercice 1.3.1 Show that the Schwarzschild and the Reissner-Nordström metrics
are static, but that the Kerr metrics with a 6= 0 are not.

A space–time is called axisymmetric if there exists a Killing vector field Y ,
which generates a one parameter group of isometries, and which behaves like a
rotation: this property is captured by requiring that all orbits 2π periodic, and
that the set {Y = 0}, called the axis of rotation, is non-empty. Killing vector
fields which are a non-trivial linear combination of a time translation and of
a rotation in the asymptotically flat region are called stationary-rotating, or
helical. Note that those definitions require completeness of orbits of all Killing
vector fields (this means that the equation ẋ = X has a global solution for all
initial values), see Refs. [11] and [21] for some results concerning this question.

In the extended Schwarzschild space-time the set {r = 2m} is a null hy-
persurface E , the Schwarzschild event horizon. The stationary Killing vector
X = ∂t extends to a Killing vector X̂ in the extended spacetime which becomes
tangent to and null on E , except at the ”bifurcation sphere” right in the middle
of Figure 1.8, where X̂ vanishes.

A null hypersurface which coincides with a connected component of the set

NX := {g(X, X) = 0 , X 6= 0} ,

where X is a Killing vector, is called a Killing horizon associated to X. Fig-
ure 1.4 makes it clear that the event horizon {r = 2m} of the Kruskal-Szekeres
space-time is the union of four Killing horizons and of the bifurcation surface,
with respect to the Killing vector field which equals ∂t in the asymptotically
flat region.

Another similar example is provided by the “boost Killing vector field”

K = z∂t + t∂z (1.3.1)

in Minkowski space-time: The Killing horizon N (K) of K has four connected
components

N (K)εδ := {t = εz , δt > 0} , ε, δ ∈ {±1} .

The closure N (K) of N (K) is the set {|t| = |z|}, which is not a manifold,
because of the crossing of the null hyperplanes {t = ±z} at t = z = 0. Horizons
of this type are referred to as bifurcate Killing horizons.

One more noteworthy example, in Minkowski space-time, is provided by the
Killing vector

X = y∂t + t∂y + x∂y − y∂x = y∂t + (t + x)∂y − y∂x . (1.3.2)
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Thus, X is the sum of a boost y∂t + t∂y and a rotation x∂y − y∂x. Note that
X vanishes if and only if

y = t + x = 0 ,

which is a two-dimensional isotropic submanifold of Minkowski space-time R1,3.
Further,

g(X, X) = (t + x)2 = 0

which is an isotropic hyperplane in R1,3.

1.3.1 Surface gravity

The surface gravity κ of a Killing horizon is defined by the formula

(XαXα),µ

∣∣∣
N (X)

= −2κXµ . (1.3.3)

A word of justification is in order here: since g(X, X) = 0 on N (X) the differ-
ential of g(X, X) is conormal to N (X). Recalling that on a null hypersurface
the conormal is proportional to g(`, ·), where ` is any null vector tangent to
N (those are defined uniquely up to a proportionality factor), we obtain that
d(g(X,X)) is proportional to X[ = Xµdxµ; whence (1.3.3).

As an example, consider the Killing vector K of (1.3.1). We have

d(g(K, K)) = d(−z2 + t2) = 2(−zdz + tdt) ,

which is twice K[ on N (K)εδ. On another hand, for the Killing vector X of
(1.3.2) we have

d(g(X, X)) = 2(t + x)(dt + dx) ,

which vanishes on each of the Killing horizons {t = −x , y 6= 0}.
The surface gravity of black holes plays an important role in black hole

thermodynamics, cf., e.g., [3] and references therein.
A Killing horizon N (X) is said to be degenerate, or extreme, if κ vanishes

throughout N (X); it is called non-degenerate if κ has no zeros on N (X). Thus,
the Killing horizons N(K)εδ are non-degenerate, while both Killing horizons of
X given by (1.3.2) are degenerate.

Example 1.3.2 Consider the Schwarzschild metric in the representation (1.2.6),

g = −(1− 2m

r
)dv2 + 2dvdr + r2dΩ2 . (1.3.4)

We have
d
(
g(X, X)

)
= d

(
g(∂v, ∂v)

)
= −2m

r2
dr .

Now, X[ = g(∂v, ·) = −(1 − 2m
r )dv + dr, which equals dr for r = 2m. Comparing

with (1.3.3) gives

κ ≡ κm :=
1

2m
.

We see that the Schwarzschild black holes are all non-degenerate, with surface
gravity (2m)−1. So there are no degenerate black holes within the Schwarzschild
family. It will be seen in Section 2.5.2 that there are no regular, degenerate, static
vacuum black holes at all.
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In Kerr space-times (see Section 1.5 below) we have κ = 0 if and only if
m = a. On the other hand, all horizons in the multi-black hole Majumdar-
Papapetrou solutions of Section 1.6 are degenerate.

The surface gravity κ is constant on bifurcate [29, p. 59] Killing horizons.
Yet another class of space-times with constant κ ([24], Theorem 7.1) is

provided by space-times satisfying the dominant energy condition: this means
that TµνX

µY ν ≥ 0 for all timelike future directed vector fields X and Y .

1.4 The Reissner-Nordström metrics

The Reissner-Nordström metrics are the unique spherically symmetric solu-
tions of the Einstein-Maxwell equations (with vanishing cosmological constant).
They turn out to be static, asymptotically flat, and describe black hole space-
times with interesting global properties for a certain range of parameters. The
metric takes the form

4g = −
(
1− 2m

r
+

Q2

r2

)
dt2 +

dr2

1− 2m

r
+

Q2

r2

+ r2dΩ2 , (1.4.1)

where m is, as usual, the ADM mass of g and Q is the total electric charge.
The electromagnetic potential takes the form

A =
Q

r
dr . (1.4.2)

The equation g(∂t, ∂t) = 0 has solutions r = r± provided that |Q| ≤ m:

r± = m±
√

m2 −Q2 .

Calculating as in Example 1.3.2, one finds that the surface gravities of the
horizons r = r± of the Reissner-Nordström metric equal

κ± = −1
2
∂rgtt|r=r± =

1
2
∂r

(
1− 2m

r
+

Q2

r2

)∣∣∣
r=r±

=
mr± −Q2

r3±

= ±
√

m2 −Q2

r2±
.

For r = r+ this is strictly positive unless |Q| = m; so we see that Reissner-
Nordström black holes are non-degenerate for |Q| < m, and degenerate when
|Q| = m.

In dimensions n + 1 ≥ 5 one has [52] the following counterpart of (1.4.1)-
(1.4.2):

n+1g = −
(
1− 2m

rn−2
+

Q2

r2(n−2)

)
dt2 +

dr2

1− 2m

rn−2
+

Q2

r2(n−2)

+ r2dΩ2 , (1.4.3)

A =
Q

rn−2
dr , (1.4.4)

where m is related to the ADM mass, and Q to the total charge.
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1.5 The Kerr metric

There is a rotating generalisation of the Schwarzschild metric, namely the two
parameter family of exterior Kerr metrics, which in Boyer-Lindquist coordi-
nates take the form

g = −∆− a2 sin2 θ

Σ
dt2 − 4amr sin2 θ

Σ
dtdϕ +

+
(r2 + a2)2 −∆a2 sin2 θ

Σ
sin2 θdϕ2 +

Σ
∆

dr2 + Σdθ2 . (1.5.1)

Here

Σ = r2 + a2 cos2 θ , ∆ = r2 + a2 − 2mr = (r − r+)(r − r−) ,

and r+ < r < ∞, where

r± = m± (m2 − a2)
1
2 .

The metric satisfies the vacuum Einstein equations for any real values of the
parameters a and m, but we will only discuss the range 0 ≤ a < m. When
a = 0, the Kerr metric reduces to the Schwarzschild metric. The Kerr metric is
again a vacuum solution, and it is stationary with X = ∂t the asymptotic time
translation, as well as axisymmetric with Y = ∂ϕ the generator of rotations.
Similarly to the Schwarzschild case, it turns out that the metric can be smoothly
extended across r = r+, with {r = r+} being a smooth null hypersurface E in
the extension. The simplest extension is obtained when t is replaced by a new
coordinate

v = t +
∫ r

r+

r2 + a2

∆
dr , (1.5.2)

with a further replacement of ϕ by

φ = ϕ +
∫ r

r+

a

∆
dr . (1.5.3)

It is convenient to use the symbol ĝ for the metric g in the new coordinate
system, obtaining

ĝ = −
(
1− 2mr

Σ

)
dv2 + 2drdv + Σdθ2 − 2a sin2 θdφdr

+
(r2 + a2)2 − a2 sin2 θ∆

Σ
sin2 θdφ2 − 4amr sin2 θ

Σ
dφdv . (1.5.4)

In order to see that (1.5.4) provides a smooth Lorentzian metric for v ∈ R and
r ∈ (0,∞), note first that the coordinate transformation (1.5.2)-(1.5.3) has been
tailored to remove the 1/∆ singularity in (1.5.1), so that all coefficients are now
analytic functions on R× (0,∞)× S2. A direct calculation of the determinant
of ĝ is somewhat painful, a simpler way is to proceed as follows: first, the calcu-
lation of the determinant of the metric (1.5.1) reduces to that of a two-by-two
determinant in the (t, ψ) variables, leading to det g = − sin2 θΣ2. Next, it is very
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easy to check that the determinant of the Jacobi matrix ∂(v, r, θ, φ)/∂(t, r, θ, ϕ)
is one. It follows that det ĝ = − sin2 θΣ2 for r > r+. Analyticity implies
that this equation holds globally, which (since Σ has no zeros) establishes the
Lorentzian signature of ĝ for all positive r.

Let us show that the region r < r+ is a black hole region, in the sense of
(1.2.8). We start by noting that ∇r is a causal vector for r− ≤ r ≤ r+, where
r− = m − √

m2 + a2. A direct calculation using (1.5.4) is again somewhat
lengthy, instead we use (1.5.1) in the region r > r+ to obtain there

ĝ(∇r,∇r) = g(∇r,∇r) = grr =
1

grr
=

∆
Σ

=
(r − r+)(r − r−)

r2 + a2 cos2 θ
. (1.5.5)

But the left-hand-side of this equation is an analytic function throughout the
extended manifold R×(0,∞)×S2, and uniqueness of analytic extensions implies
that ĝ(∇r,∇r) equals the expression at the extreme right of (1.5.5). (The
intermediate equalities are of course valid only for r > r+.) Thus∇r is spacelike
if r < r− or r > r+, null on the “Killing horizons” {r = r±}, and timelike in
the region {r− < r < r+}. We choose a time orientation so that ∇r is future
pointing there.

Consider, now, a future directed causal curve γ(s). Along γ we have

dr

ds
= γ̇i∇ir = gij γ̇

i∇jr = g(γ̇,∇r) < 0 (1.5.6)

in the region {r− < r < r+}, because the scalar product of two future directed
causal vectors is always negative. This implies that r is strictly decreasing along
future directed causal curves in the region {r− < r < r+}, so that such curves
can only leave this region through the set {r = r−}. In other words, no causal
communication is possible from the region {r < r+} to the “exterior world”
{r > r+}.

The Schwarzschild metric has the property that the set g(X, X) = 0, where
X is the “static Killing vector” ∂t, coincides with the event horizon r = 2m.
This is not the case any more for the Kerr metric, where we have

g(∂t, ∂t) = ĝ(∂v, ∂v) = ĝvv = −
(
1− 2mr

r2 + a2 cos2 θ

)
,

and the equation ĝ(∂v, ∂v) = 0 defines a set called the ergosphere:

r̊± = m±
√

m2 − a2 cos2 θ ,

see Figures 1.9 and 1.10. The ergosphere touches the horizons at the axes of
symmetry cos θ = ±1. Note that ∂r̊±/∂θ 6= 0 at those axes, so the ergosphere
has a cusp there. The region bounded by the outermost horizon r = r+ and
the outermost ergosphere r = r̊+ is called the ergoregion, with X spacelike in
its interior. We refer the reader to Refs. [7] and [56] for an exhaustive analysis
of the geometry of the Kerr space-time.

One of the most useful methods for analysing solutions of wave equations is the
energy method. As an illustration, consider the wave equation

2u = 0 . (1.5.7)
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Figure 1.9: A coordinate representation [62] of the outer ergosphere r = r̊+,
the event horizon r = r+, the Cauchy horizon r = r−, and the inner ergosphere
r = r̊− with the singular ring in Kerr space-time. Computer graphics by Kayll
Lake [34].

Let St is a foliation of M by spacelike hypersurfaces, the energy Et of u on St

associated to a vector field X is defined as

E(t) =
∫

St

Tµ
νXµην ,

where Tµν is the usual energy-momentum tensor of a scalar field,

Tµν = ∇µu∇νu− 1
2
∇αu∇αu gµν .

The energy functional E has two important properties: 1): E ≥ 0 if X is causal,
and 2): E(t) is conserved if X is a Killing vector field and, say, u has compact
support on each of the St.

Now, the existence of ergoregions where the Killing vector X becomes space-like
leads to an E(t) which is not necessarily positive any more, and the energy stops be-
ing a useful tool in controlling the behavior of the field. This is one of the obstactles
to our understanding of both linear and non-linear, solutions of wave equations on a
Kerr background7, not to mention the wide open question of non-linear stability of
the Kerr black holes within the class of globally hyperbolic solutions of the vacuum
Einstein equations.

The hypersurfaces
H± := {r = r±}

provide examples of null acausal boundaries. Because g(∇r,∇r) vanishes at
H±, the usual calculation shows that the integral curves of ∇r with r = r±
are null geodesics. Such geodesics, tangent to a null hypersurface, are called
generators of this hypersurface. A direct calculation of ∇r from (1.5.4) requires
work which can be avoided as follows: in the coordinate system (t, r, θ, ϕ) of
(1.5.1) one obtains immediately

∇r = gµν∂µr∂ν =
∆
Σ

∂r .

7See [2] and refs. therein for further information on that subject.
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Figure 1.10: Isometric embedding in Euclidean three space of the ergosphere
(the outer hull), and part of the event horizon, for a rapidly rotating Kerr solu-
tion. The hole in the event horizon arises because there is no global isometric
embedding for the event horizon when a/m >

√
3/2 [62]. Somewhat surpris-

ingly, the embedding fails to represent accurately the fact that the cusps at the
rotation axis are pointing inwards, and not outwards. Computer graphics by
Kayll Lake [34].

Now, under (1.5.2)-(1.5.3) the vector ∂r transforms as

∂r → ∂r +
a

∆
∂φ +

r2 + a2

∆
∂v .

This shows that in the coordinates (v, r, θ, φ) we have

∇r =
∆
Σ

∂r + a∂φ + (r2 + a2)∂v .

Since ∆ vanishes at r = r±, and r2 + a2 equals 2mr± there, we conclude that
the “stationary-rotating” Killing field X + ωY , where

X = ∂t = ∂v , Y = ∂φ = ∂ϕ , ω =
a

2mr+
, (1.5.8)

is proportional to ∇r on {r > r+}:
X + ωY = 2mr+∇r on H+ .

It follows that ∂t +ω∂ϕ is null and tangent to the generators of the horizon H+.
In other words, the generators are rotating with respect to the frame defined
by the stationary Killing vector field X. This property is at the origin of the
definition of ω as the angular velocity of the event horizon.

Higher dimensional generalisations of the Kerr metric have been constructed
by Myers and Perry [52].

1.6 Majumdar-Papapetrou multi black holes

In the examples discussed so far the black hole event horizon is a connected
hypersurface in space-time. In fact [4, 13], there are no regular, static, vacuum
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solutions with several black holes, consistently with the intuition that gravity
is an attractive force. However, static multi black holes become possible in
presence of electric fields. Well-behaved examples are exhausted [16] by the
Majumdar-Papapetrou black holes, in which the metric 4g and the electromag-
netic potential A take the form [43, 59]

4g = −u−2dt2 + u2(dx2 + dy2 + dz2) , (1.6.1)
A = u−1dt , (1.6.2)

with some nowhere vanishing function u. Einstein–Maxwell equations read then

∂u

∂t
= 0 ,

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0 . (1.6.3)

Regular, or standard MP black holes are obtained if the coordinates xµ of
(1.6.1)–(1.6.2) cover the range R× (R3 \ {~ai}) for a finite set of points ~ai ∈ R3,
i = 1, . . . , I, and if the function u has the form

u = 1 +
I∑

i=1

µi

|~x− ~ai| , (1.6.4)

for some positive constants µi.
The property that these are the only regular black holes within the MP

class has been proved in [14], see also [15, 23]; the fact that all multi-component
regular static black holes are in the MP class has been established in [16],
building upon the work in [44, 65, 66].

The case I = ∞ has been considered in [12, Appendix B], where it was
pointed out that the scalar FµνF

µν is unbounded whenever the ~ai’s have ac-
cumulation points. It follows from [14] that the case where I = ∞ and the
~ai’s do not have accumulation points cannot lead to regular asymptotically flat
space–times.

Calculating the flux of the electric field on spheres |~x−~ai| = ε → 0 one finds
that µi is the electric charge carried by the puncture ~x = ~ai.

Higher-dimensional generalisations of the MP solutions have been pointed
out by Myers [51]. The metric and the electromagnetic potential take the form

n+1g = −u−2dt2 + u
2

n−2

(
(dx1)2 + . . . + (dxn)2

)
, (1.6.5)

A = u−1dt , (1.6.6)

with u being time independent, and harmonic with respect to the flat metric
(dx1)2 + . . . + d(xn)2. Then, a natural candidate potential u for solutions with
black holes takes the form

u = 1 +
N∑

i=1

µi

|~x− ~ai|n−2
, (1.6.7)

for some ~ai ∈ Rn.
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Let us point out some features of the geometries (1.6.5). First, for large |~x|
we have

u = 1 +
∑N

i=1 µi

|~x|n−2
+ O(|~x|−(n−1)) ,

so that the metric is asymptotically flat, with total ADM mass equal to
∑N

i=1 µi.
Next, choose any i and let r = |~x−~ai| be a radial coordinate centred at ~ai.

Then the space-part g of the metric (1.6.5) takes the form

g = u
2

n−2

(
(dx1)2 + . . . + (dxn)2

)
= r2u

2
n−2

(dr2

r2
+ h

)

= (r
1

n−2 u)
2

n−2 (d( ln r︸︷︷︸
=:x

)2 + h) (1.6.8)

= (r
1

n−2 u)
2

n−2 (dx2 + h) , (1.6.9)

where h is the unit round metric on Sn−1. Now, the metric dx2 + h is the
canonical, complete, product metric on the cylinder R× Sn−1. Further

r
1

n−2 u →~x→~ai
µi > 0 .

Therefore the space-part of the Majumdar-Papapetrou metric approaches a
multiple of the canonical metric on R × Sn−1 as ~x approaches ~ai. Hence, the
space geometry is described by a complete metric which has one asymptotically
flat region |~x| → ∞ and N asymptotically cylindrical regions ~x → ~ai.

It has been shown by Hartle and Hawking [23] that, in dimension n = 3,
every standard MP space–time can be analytically extended to an electro–
vacuum space–time with I black hole regions, the calculation (keeping an eye
on n ≥ 3) proceeds as follows: Let, as before, r = |~x−~ai|; for r small we replace
t by a new coordinate v defined as

v = t + f(r) =⇒ dt = dv − f ′(r)dr ,

with a function f to be determined shortly. We obtain

n+1g = −u−2(dv − f ′dr)2 + u
2

n−2 (dr2 + r2h)

= −u−2dv2 + 2u−2f ′dv dr +
(
u

2
n−2 − u−2(f ′)2

)
dr2 + u

2
n−2 r2h .

(1.6.10)

We have already seen that the last term u
2

n−2 r2h is well behaved, let us show
that in some cases we can choose f to get rid of the singularity in grr. For this
we Taylor expand u near ~ai as follows:

u =
µi

rn−2
+ 1 +

∑

j 6=i

µj

|~aj − ~ai|n−2

︸ ︷︷ ︸
=:̊u

+rû = ů
(
1 + O(rn−1)

)
, (1.6.11)

with û — an analytic function of r and of the angular variables, at least for
small r. We choose f so that ů

2
n−2 − ů−2(f ′)2 vanishes:

f ′ = ů
n−1
n−2 .
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This shows that the function

n+1grr = u
2

n−2 − u−2(f ′)2 = ů
2

n−2︸ ︷︷ ︸
∼r−2

[(u

ů

) 2
n−2 −

( ů

u

)2]
= O(rn−3)

is an analytic function of r and angular variables for small r.
The above works well when n = 3, in which case (1.6.10) reads

3+1g = − u−2︸︷︷︸
∼r2

dv2 + 2
( ů

u︸︷︷︸
=1+O(r2)

)2
dv dr + grr︸︷︷︸

=O(1)

dr2 + u2r2︸︷︷︸
=µ2

i +O(r)

h .

At r = 0 the determinant of 3+1g equals −µ4
i det h 6= 0, which implies that

3+1gµν can be analytically extended across the null hypersurface Hi := {r =
0} to a real-analytic Lorentzian metric defined in a neighborhood of Hi. By
analyticity the extended metric is vacuum. Obviously Hi is a Killing horizon
for the Killing vector ∂t = ∂v, since 3+1gvv vanishes at Hi.

Let us return to general dimensions n ≥ 4 and consider n+1grv:

n+1grvdr dv = u−2f ′dr dv =
( ů

u

)2
ů

3−n
n−2 dr dv =

(
1 + O(rn−2)

)
µ

3−n
n−2

i rn−3dr dv

=
(
1 + O(rn−2)

) µ
3−n
n−2

i

n− 2
d(rn−2︸︷︷︸

=:ρ

) dv

It follows that this term will be better behaved if we introduce a new radial
variable ρ = rn−2. This, however, will wreak havoc in n+1grrdr2, as well as in
various other terms because then r = ρ

1
n−2 , which introduces fractional powers

of the new coordinate ρ in the metric. Now, none of these problems occur if
N = 1, in which case u = ů, hence n+1grr ≡ 0; furthermore,

n+1gvv = ů−2 =
(
1 + µi

ρ

)−2
= ρ2

(µi+ρ)2
,

u
2

n−2 r2 = (̊uρ)
2

n−2 = (µi + ρ)
2

n−2 ,

n+1grvdr dv = ů
3−n
n−2

(n−2)rn−3 dρdv = (ůrn−2)
3−n
n−2

(n−2) dρdv = (µi+ρ)
3−n
n−2

(n−2) dρdv ,

which proves that the metric can be extended analytically across a Killing
horizon {ρ = 0}, as desired. (The case N = 1 is of course spherically symmetric,
so this calculation is actually a special case of that in Remark 1.2.1.)

For n ≥ 4 and N > 1 the above construction (or some slight variation
thereof, with f not necessarily radial, chosen to obtain n+1grr = 0) produces
a metric which can at best be extended by continuity across a Killing horizon
“located at ~x = ~ai”, but the extensions so obtained do not appear to be differ-
entiable. The optimal degree of differentiability that one can obtain does not
seem to be known; in any case, it has been shown in [75] that the metric cannot
be extended smoothly when n ≥ 4 and N = 2 or 3. Similarly, in [5] it is shown
that axi-symmetric configurations in n ≥ 5 do not poseess C2 extensions.

Problem 1.6.1 Study, for n ≥ 4, whether (1.6.7) can be corrected by a harmonic
function to give a smooth event horizon. Alternatively, show that there are no
regular static multi-component electro-vacuum black holes in higher dimensions.



40 CHAPTER 1. FUNDAMENTALS

1.7 Emparan-Reall “black rings”

An interesting class of black hole solutions of the 4 + 1 dimensional station-
ary vacuum Einstein equations has been found by Emparan and Reall [19].
The metrics are asymptotically Minkowskian in spacelike directions, with an
ergosurface and an event horizon having S1 × S2 cross-sections. (The “ring”
terminology refers to the S1 factor in S1×S2.) Our presentation is an expanded
version of [19], with a somewhat different labeling of the contants appearing in
the metric; furthermore, the gravitational coupling constant G from that refer-
ence has been set to one here.8

The starting point of the analysis is the following metric, solution of vacuum
Einstein equations:

g = −F (x)
F (y)

(
dt +

√
ν

ξF

ξ1 − y

A
dψ

)2

+
F (y)

A2(x− y)2

[
−F (x)

(
dy2

G(y)
+

G(y)
F (y)

dψ2

)

+F (y)
(

dx2

G(x)
+

G(x)
F (x)

dϕ2

)]
, (1.7.1)

where A > 0, ν, and ξF are constants, and

F (ξ) = 1− ξ

ξF
, (1.7.2)

G(ξ) = νξ3 − ξ2 + 1 = ν(ξ − ξ1)(ξ − ξ2)(ξ − ξ3). (1.7.3)

The constant ν is chosen to satisfy 0 < ν ≤ ν∗ = 2/3
√

3. The upper bound is
determined by the requirement that the three roots ξ1 < ξ2 < ξ3 of G are real.
Note that G(0) = 1 so that ξ1 < 0. Further G′ = 3νξ2−2ξ > 0 for ξ < 0, which
implies that ξ2 > 0. Hence,

ξ1 < 0 < ξ2 < ξ3 .

In our analysis we assume that9

ξ2 < ξF < ξ3 .

a definite choice of ξF consistent with this hypothesis will be made shortly.
Requiring that

ξ1 ≤ x ≤ ξ2 (1.7.4)

guarantees G(x) ≥ 0 and F (x) > 0. On the other hand, both G(y) and F (y)
will be allowed to change sign, as we will be working in the ranges

y ∈ (−∞, ξ1] ∪ (ξF ,∞) . (1.7.5)
8I am grateful to R. Emparan and H. Reall for allowing me to reproduce their figures.
9According to [19] [19], the choice ξF = ξ2 corresponds to the five-dimensional rotating

black hole of [52], with one angular momentum parameter set to zero.
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Explicit formulae for the roots of G can be found, which are not particularly
enlightening. For example, for ν ≥ ν∗ one of the roots reads

α

6ν
+

2
3να

+
1
3ν

, where α =
3
√
−108 ν2 + 8 + 12

√
3
√

27 ν2 − 4ν ,

and a proper understanding of the various roots appearing in this equation also
gives all solutions for 0 ≤ ν < ν∗. Alternatively, in this last range of ν the roots
belong to the set {(zk + 1

2 ) 2
3ν }2k=0, with

zk = cos
(1

3

[
arccos

(
1− 27ν2

2

)
+ 2kπ

])
.

Performing affine transformations of the coordinates, one can always achieve

ξ1 = −1 , ξ2 = 1 ,

but we will not impose these conditions in the calculations that follow.
There is a potential singularity of the G−1(x)dx2+G(x)F−1(x)dϕ2 terms in

the metric at x = ξ1, which can be handled as follows: consider, first, a metric
of the form

h =
dx2

x− x0
+ (x− x0)f(x)dϕ2 , f(x0) 6= 0 . (1.7.6)

Introducing ρ̃ = 2
√

x− x0, ϕ = λϕ̃ one obtains

h = dρ̃2 +
λ2f

(
x0 + ρ̃2

4

)

4
ρ̃2dϕ̃2 . (1.7.7)

This defines a metric which smoothly extends through ρ̃ = 0 (when f is smooth)
if and only if ϕ̃ is periodically identified with period, say, 2π, and

λ =
2√

f(x0)
. (1.7.8)

In order to see that, suppose that (1.7.8) holds, set x̃1 = ρ̃ cos ϕ̃, x̃2 = ρ̃ sin ϕ̃, we
then have

h = dρ̃2 + ρ̃2dϕ̃2

︸ ︷︷ ︸
δabdx̃adx̃b

+
λ2

(
f
(
x0 + ρ̃2

4

)
− f(x0)

)

4
ρ̃2dϕ̃2

︸ ︷︷ ︸
δabdx̃adx̃b−dρ̃2

= δabdx̃adx̃b +
λ2

(
f
(
x0 + ρ̃2

4

)
− f(x0)

)

4

(
δabdx̃adx̃b − ρ̃−2x̃ax̃bdx̃adx̃b

)
.

As f is smooth, there exists a smooth function s such that

λ2
(
f
(
x0 + ρ̃2

4

)
− f(x0)

)

4
= ρ̃2s(ρ̃2) ,

so that
h =

[(
1 + s(ρ̃2)ρ̃2

)
δab + s(ρ̃2)x̃ax̃b

]
dx̃adx̃b , (1.7.9)

which is manifestly smooth. This shows sufficiency of (1.7.8).
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Exercice 1.7.1 Show that (1.7.8) is necessary for a smooth complete metric.

In order to apply the above analysis to the last line of (1.7.1) at x0 = ξ1 we
have

dx2

G(x)
+

G(x)
F (x)

dϕ2 =

=
1

ν(x− ξ2)(x− ξ3)

(
dx2

x− ξ1
+

ν2ξF (x− ξ1)(x− ξ2)2(x− ξ3)2

ξF − x
dϕ2

)

=
1

ν(x− ξ2)(x− ξ3)

(
dρ̃2 +

λ2ν2ξF (x− ξ2)2(x− ξ3)2

4(ξF − x)
ρ̃2dϕ̃2

)
, (1.7.10)

so that (1.7.8) becomes

λ =
2
√

ξF − ξ1

ν
√

ξF (ξ2 − ξ1)(ξ3 − ξ1)
. (1.7.11)

For further purposes it is convenient to rewrite (1.7.10) as

dx2

G(x)
+

G(x)
F (x)

dϕ2 =
1

H(x)

[
dρ̃2 +

(
1 + s(ρ̃2)ρ̃2

)
ρ̃2dϕ̃2

]
, (1.7.12)

for a smooth function s with, of course,

H(ξ) = ν(ξ − ξ2)(ξ − ξ3) . (1.7.13)

When ξF > ξ2 one can repeat this analysis at x = ξ2, obtaining instead

λ =
2
√

ξF − ξ2

ν
√

ξF (ξ2 − ξ1)(ξ3 − ξ2)
. (1.7.14)

Equality of (1.7.11) and (1.7.14) determines ξF :

ξF =
ξ1ξ2 − ξ3

2

ξ1 − 2ξ3 + ξ2
(1.7.15)

(Elementary algebra shows that ξ2 < ξF < ξ3, as desired.) It should be clear
that with this choice of ξF , for y 6= ξ1, the (x, ϕ)–part of the metric (1.7.1)
is a smooth (in fact, analytic) metric on S2, with the coordinate x being the
equivalent of the usual polar coordinate θ on S2, except possibly at those points
where the overall conformal factor vanishes or acquires zeros, which will be
analysed shortly. Anticipating, the set obtained by varying x and φ and keeping
y = ξ1 will be viewed as S2 with the north pole x = ξ1 removed.

The calculation of the determinant of (1.7.1) reduces to that of a two-by-two
determinant in the (t, ψ) variables, which equals

F 2(x)G(y)
A2(x− y)2F (y)

, (1.7.16)

leading to

det g = −F 2(x)F 4(y)
A8(x− y)8

, (1.7.17)
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so the signature is either (− + + + +) or (− − − + +), except perhaps at the
singular points x = y, or F (x) = 0 (which does not happen when ξF > ξ2,
compare (1.7.4)), or F (y) = 0.

Now, (1.7.1) is a sum of squares, and F (x) > 0, G(x) > 0 (away from the
axes x ∈ {ξ1, ξ2}) thus the signature is

(
sign(−F (y)), sign(−G(y)), sign(−F (y)G(y)),+,+

)
. (1.7.18)

An examination of the four possible cases shows that a Lorentzian signature is
obtained except if F (y) > 0 and G(y) > 0.

We start by considering
y ≤ ξ1 , (1.7.19)

which leads to F (y) > 0 and G(y) ≤ 0. Note that G(ξ1) vanishes; however, it
should be clear from what has been said that −( dy2

G(y) + G(y)
F (y)dψ2) is a smooth

Riemannian metric if ξ1 − y is related to a radial variable ρ̂ = 2
√

ξ1 − y ∈ R+

and ψ = λϕ̂, with λ given by (1.7.14) and ϕ̂ being 2π-periodic. Analogously to
(1.7.12), we thus have

−
(

dy2

G(y)
+

G(y)
F (y)

dψ2

)
=

1
H(y)

[
dρ̂2 +

(
1 + s(ρ̂2)ρ̂2

)
ρ̂2dϕ̂2

]
. (1.7.20)

Note that the remaining terms in (1.7.1) involving dψ are also well behaved:
indeed, if we set x̂1 = ρ̂ cos ϕ̂, x̂2 = ρ̂ sin ϕ̂, then

(ξ1 − y)dψ =
λρ̂2

4
dϕ̂ =

λ

4
(x̂1dx̂2 − x̂2dx̂1) ,

which is again manifestly smooth.
We turn our attention now to the singularity x = y. Given our ranges of

coordinates, this only occurs for x = y = ξ1. So, at this stage, the coordinate
t parameterises R, the coordinates (y, ψ) are (related to polar) coordinates on
R2, the coordinates (x, ϕ) are coordinates on S2. If we think of x = ξ1 as being
the north pole of S2, and we denote it by N , then g is an analytic metric on

R︸︷︷︸
t

×
(
( R2︸︷︷︸
y,ψ⇔ρ̂,ϕ̂

× S2︸︷︷︸
x,ϕ⇔ρ̃,ϕ̃

) \ ({0} × {N})
)

.

Near the singular set R×{0}× {N}, Emparan and Reall replace (ρ̃, ρ̂) by new
radial variables (r̃, r̂) defined as

r̃ =
ρ̃

B(ρ̃2 + ρ̂2)
, r̂ =

ρ̂

B(ρ̃2 + ρ̂2)
, (1.7.21)

where B is a constant which will be determined shortly. This is inverted as

ρ̃ =
r̃

B(r̃2 + r̂2)
, ρ̂ =

r̂

B(r̃2 + r̂2)
. (1.7.22)

It is convenient to set
r =

√
r̃2 + r̂2 .
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We note

x = ξ1 +
ρ̃2

4
= ξ1 +

r̃2

4B2r4
, y = ξ1 − ρ̂2

4
= ξ1 − r̂2

4B2r4
,

x− y =
1

4B2r2
.

This last equation shows that x− y → 0 corresponds to region r →∞.
Inserting (1.7.12) and (1.7.20) into (1.7.1) we obtain

g = −F (x)
F (y)

(
dt +

√
ν

ξF

ξ1 − y

A
dψ

)2

+
F (y)

A2(x− y)2H(x)H(y)

[
F (x)H(x)

(
dρ̂2 + (1 + s(ρ̂2)ρ̂2)ρ̂2dϕ̂2

)

+F (y)H(y)
(

dρ̃2 + (1 + s(ρ̃2)ρ̃2)ρ̃2dϕ̃2

)]
. (1.7.23)

The simplest terms arise from the first line above:

−ξF − ξ1 − r̃2

4B2r4

ξF − ξ1 + r̂2

4B2r4

(
dt +

√
λν

ξF

1
4AB2r4

r̂2dϕ̂

)2

= −
(
1− 1

4(ξF − ξ1)B2r2
+ O(r−4)

)(
dt + O(r−4)r̂2dϕ̂

)2

. (1.7.24)

In order to analyse the remaining terms, one needs to carefully keep track of all
potentially singular terms in the metric: in particular, one needs to make sure
that the decay of the metric to the flat one is uniform, including neighborhoods
of the rotation axes r̂ = 0 and r̃ = 0. So we write

gϕ̂ϕ̂dϕ̂2 + gϕ̃ϕ̃dϕ̃2 =
F (y)

A2(x− y)2H(x)H(y)

[
F (x)H(x)

(
1 + s(ρ̂2)ρ̂2

)
ρ̂2dϕ̂2

+F (y)H(y)
(
1 + s(ρ̃2)ρ̃2

)
ρ̃2dϕ̃2

]

=
4B2F (y)

A2H(x)H(y)

[
F (x)H(x)

(
1 + O(r−4)r̂2

)
r̂2dϕ̂2

+F (y)H(y)
(
1 + O(r−4)r̃2

)
r̃2dϕ̃2

]
. (1.7.25)

From

dρ̃ =
1

Br4

(
(r̂2 − r̃2)dr̃ − 2r̃r̂dr̂

)
, dρ̂ =

1
Br4

(
(r̃2 − r̂2)dr̂ − 2r̃r̂dr̃

)
,

one finds

gr̂r̂ =
(4B)2F (y)

A2H(x)H(y)r4

(
F (x)H(x)(r̂2 − r̃2)2 + 4F (y)H(y)r̂2r̃2

)
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=
(4B)2F (y)

A2H(x)H(y)

(
F (x)H(x) + 4(F (y)H(y)− F (x)H(x))

r̂2r̃2

r4

)

=
(4B)2F (y)

A2H(x)H(y)

(
F (x)H(x) + O(r−4)r̂2

)
, (1.7.26)

gr̃r̃ =
(4B)2F (y)

A2H(x)H(y)r4

(
F (y)H(y)(r̂2 − r̃2)2 + 4F (x)H(x)r̂2r̃2

)

=
(4B)2F (y)

A2H(x)H(y)

(
F (y)H(y) + O(r−4)r̃2

)
, (1.7.27)

gr̃r̂ =
2(4B)2F (y)

A2H(x)H(y)r4
r̂r̃(r̃2 − r̂2)(F (y)H(y)− F (x)H(x))

= O(r−4)r̂r̃ . (1.7.28)

It is clearly convenient to choose B so that

(4B)2F 2(ξ1)
A2H(ξ1)

= 1 ,

and with this choice (1.7.24)-(1.7.28) give

g = −
(
1 + O(r−2)

)(
dt + O(r−4)r̂2dϕ̂

)2
+ O(r−4) r̃dr̃ r̂dr̂

+
(
1 + O(r−2)

)(
dr̂2 + r̂2dϕ̂2

)
+ O(r−4)r̂4dϕ̂2

+
(
1 + O(r−2)

)(
dr̃2 + r̃2dϕ̃2

)
+ O(r−4)r̃4dϕ̃2 . (1.7.29)

To obtain a manifestly asymptotically flat form one sets

ŷ1 = r̂ cos ϕ̂ , ŷ2 = r̂ sin ϕ̂ , ỹ1 = r̃ cos ϕ̃ , ỹ2 = r̃ sin ϕ̃ ,

then

r̂dr̂ = ŷ1dŷ1 + ŷ2dŷ2 , r̂2dϕ̂ = ŷ1dŷ2 − ŷ2dŷ1 ,

r̃dr̃ = ỹ1dỹ1 + ỹ2dỹ2 , r̃2dϕ̃ = ỹ1dỹ2 − ỹ2dỹ1 ,

Introducing (xµ) = (t, ŷ1, ŷ2, ỹ1, ỹ2), (1.7.29) gives a manifestly asymptotically
flat metric:

g =
(
ηµν + O(r−2)

)
dxµdxν .

In order to understand the geometry when y → −∞, one replaces y by

Y = −1/y .

Surprisingly, the metric can be analytically extended across {Y = 0} to negative
Y : indeed, we have

g = −F (x)
[

dt2

F (y)
+ 2

√
ν

ξF

ξ1 − y

AF (y)
dtdψ

+
1

A2

(ν(ξ1 − y)2

ξF − y
+

G(y)
(x− y)2

)
dψ2 +

F (y)y4

A2(x− y)2G(y)
dY 2

]
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+
F 2(y)

A2(x− y)2

(
dx2

G(x)
+

G(x)
F (x)

dϕ2

)]

−→y→−∞

−F (x)
[
2
√

νξF

A
dtdψ +

2ξ1 + x− 1− νξF

A2
dψ2 +

1
A2νξF

dY 2

]

+
1

A2ξ2
F

(
dx2

G(x)
+

G(x)
F (x)

dϕ2

)]
, (1.7.30)

Calculating directly, or using (1.7.17) and the transformation law for det g, one
has

det g = −F 2(x)F 4(y)y4

A8(x− y)8
−→y→−∞ −F 2(x)

A8
, (1.7.31)

which shows that the metric remains non-degenerate up to {Y = 0}. Further,
one checks that all functions in (1.7.30) extend analytically to small negative
Y ; e.g.,

g(∂t, ∂t) = gtt = −F (x)
F (y)

= −ξF − x

ξF − y
= −(ξF − x)Y

Y ξF + 1
, (1.7.32)

etc.
To take advantage of the work done so far, in the region Y < 0 we replace

Y by a new coordinate
z = −Y −1 > 0 ,

obtaining a metric which has the same form as (1.7.1):

g = −F (x)
F (z)

(
dt +

√
ν

ξF

ξ1 − z

A
dψ

)2

+
F (z)

A2(x− z)2

[
−F (x)

(
dz2

G(z)
+

G(z)
F (z)

dψ2

)

+F (z)
(

dx2

G(x)
+

G(x)
F (x)

dϕ2

)]
. (1.7.33)

By continuity, or by (1.7.18), the signature remains Lorentzian, and (taking
into account our previous analysis of the zeros of G(x)) the metric is manifestly
regular in the range

ξ3 < z < ∞ . (1.7.34)

Note, however, that the “stationary” Killing vector ∂t, which was timelike in
the region Y > 0, is now spacelike in view of (1.7.32). Therefore the region
(1.7.34) is an ergoregion for the extended space-time. The ergosurface at Y = 0
has topology S1 × S2 for ξF > ξ2, as assumed here.

The above coordinates break down at z = ξ3, so one replaces ψ by a new
(periodic) coordinate χ, and t by a new coordinate v, defined as

dχ = dψ +
√
−F (z)

G(z) dz ,

dv = dt +
√

ν
ξF

(z − ξ1)
√
−F (z)

AG(z) dz .
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In the new coordinates the metric takes the form

ds2 = −F (x)
F (z)

(
dv −

√
ν

ξF

z − ξ1

A
dχ

)2

+
1

A2(x− z)2

[
F (x)

(
−G(z)dχ2 + 2

√
−F (z)dχdz

)

+ F (z)2
(

dx2

G(x)
+

G(x)
F (x)

dφ2

)]
. (1.7.35)

This is regular at
E := {z = ξ3} ,

and the metric can be analytically continued into the region ξF < z ≤ ξ3. One
can check directly from (1.7.35) that g(∇z,∇z) vanishes at E . However, it is
simplest to use (1.7.33) to obtain

g(∇z,∇z) = gzz = −A2(x− z)2G(z)
F (x)F (z)

(1.7.36)

in the region {z > ξ3}, and to invoke analyticity to conclude that this equation
remains valid on {z > ξF }. Equation (1.7.36) shows that E is a null hyper-
surface, with z being a time function on {z < ξ3}, which is thus a black hole
region by the usual arguments (compare the paragraph around (1.5.6)).

We wish to show that {z = ξ3} is the event horizon: this will follow if
we show that there is no event horizon enclosing the regionz < ξ3. For this,
consider the “area function”, defined as the determinant, say W , of the matrix

g(Ki,Kj) ,

where the Ki’s, i = 1, 2, 3, are the Killing vectors equal to ∂t, ∂ψ, and ∂ϕ in the
asymptotically flat region. In the original coordinates of (1.7.1) this equals

F (x)G(x)F (y)G(y)
A4(x− y)4

, (1.7.37)

with an identical expression where z replaces y in the coordinates of (1.7.33).
One further checks that this formula is not affected by the introduction of the
coordinates of (1.7.35). Now,

F (y)G(y) = νξF (ξF − y)(y − ξ1)(y − ξ2)(y − ξ3) ,

and, in view of the range (1.7.4) of the variable x, the sign of (1.7.37) depends
only upon the values of y and z. Since F (y) behaves as −νy4 for large y, W is
negative both for y < ξ1 and for z > ξ3. Hence, at each point p of those two
regions the set of vectors in TpM spanned by the Killing vectors is timelike.
So, suppose for contradiction, that the event horizon H intersects the region
{y ∈ [−∞, ξ1) ∪ z ∈ (ξ3,∞]}. Since H is a null hypersurface invariant under
isometries, every Killing vector is tangent to H . However, at each point at
which W is negative there exists a linear combination of the Killing vectors
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which is timelike. This gives a contradiction because no timelike vector can be
tangent to a null hypersurface.

We conclude that {z = ξ3} forms indeed the event horizon, with topology
R× S1 × S2: this is a “rotating black ring”.

It follows from (1.7.35) that the Killing vector field

ξ =
∂

∂v
+

A
√

ξF√
ν(ξ3 − ξ1)

∂

∂χ
(1.7.38)

is light-like at E , which is therefore a Killing horizon. Equation (1.7.38) shows
that the horizon is rotating, with angular velocity

ΩH =
A
√

ξF

λ(ξ3 − ξ1)
√

ν
=

A
√

νξF (ξ2 − ξ1)
2
√

ξF − ξ1
. (1.7.39)

The surface gravity is

κ =
A
√

ν

2
ξF (ξ3 − ξ2)√

ξ3 − ξF
. (1.7.40)

As κ 6= 0, one can further extend the space-time obtained so far in the usual
way to one which contains a bifurcate Killing horizon, and a white hole region.

The plot of ΩH and κ (as well as some other quantities of geometric interest)
in terms of ν can be found in Figure 1.11.

0 ν∗

A

Ro

Ri

0 ν∗

κ ΩH

Figure 1.11: Plots, as functions of ν at fixed m, of the radius of curvature Ri at
x = ξ2 of the S1 factor of the horizon, the curvature radius Ro at x = ξ1, total
area A of the ring, surface gravity κ, and angular velocity at the horizon ΩH .
All quantities are rendered dimensionless by dividing by an appropriate power
of m. Figure from [19].

It is essential to understand the nature of the orbits of the isometry group,
e.g. to make sure that the domain of outer communications does not contain
any closed timelike curves. We have:

• The Killing vector ∂t is timelike iff

F (y) > 0 ⇐⇒ y < ξF ;

• The Killing vector ∂ϕ is always spacelike;
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• From (1.7.1) we have

g(∂ψ, ∂ψ) =
νF (x)(ξ1 − y)

A2(x− y)2(ξF − y)
×

×
(
(ξF − y)(ξ2 − y)(ξ3 − y)− (ξ1 − y)(x− y)2

)

︸ ︷︷ ︸
(∗)

. (1.7.41)

For y < ξ1 we can write

(ξF − y)︸ ︷︷ ︸
≥(x−y)

(ξ2 − y)︸ ︷︷ ︸
>(ξ1−y)

(ξ3 − y)︸ ︷︷ ︸
>(x−y)

> (ξ1 − y)(x− y)2 ,

which leads to gψψ ≥ 0. Similarly, for y > ξ3,

(y − ξF )︸ ︷︷ ︸
≤(y−x)

(y − ξ2)︸ ︷︷ ︸
<(y−ξ1)

(y − ξ3)︸ ︷︷ ︸
<(y−x)

< −(ξ1 − y)(x− y)2 ,

so that ∂ψ is spacelike or vanishing throughout the domain of outer com-
munications.

• The metric induced on the level sets of t has the form

gyydy2 + gψψdψ2 + gxxdx2 + gϕϕdϕ2 . (1.7.42)

We have just seen that gψψ is non-negative, and gxx and gϕϕ also are in
the range (1.7.4). Further

gyy = − F (x)F (y)
A2(x− y)2G(y)

=
F (x)

A2(x− y)2ξF ν
× (y − ξF )

(y − ξ1)(y − ξ2)(y − ξ3)
,

an expression which is again positive in the ranges of interest. It follows
that the hypersurfaces {t = const} are spacelike.

• The main topological features of the manifold M constructed so far are
summarised in Figure 1.13, see also Figure 1.12. Hence

M = R×
[(
R2 × S2

)
\ (~0, N)︸ ︷︷ ︸

=:io

]
,

where ~0 is the origin of R2, and N is the north pole of S2, with the first R
factor corresponding to time. The point io which has been removed from
the R2×S2 factor can be thought of as representing “spatial infinity”. It
would be of interest to study the maximal analytic extensions of (M , g).

The metric h induced on the sections of the horizon {v = const , z = ξ3} can be
obtained from (1.7.42) by first neglecting the dy2 terms, and then passing to the
limit y → ξ3. (By general arguments, or by a direct calculation from (1.7.35), this
coincides with the metric of the sections {v = const} of the event horizon E .) One
finds

h =
λ2ν(ξF − x)(ξ3 − ξ1)2

ξF A2(ξ3 − ξF )
dϕ̂2 +

F 2(ξ3)
A2(x− ξ3)2

(
dx2

G(x)
+

λ2G(x)
F (x)

dϕ̃2

)
,
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x = −1 x = +1

x

ψ y

y = −1/ν

y = −1

x = const

Figure 1.12: Coordinate system for black ring metrics, from [18]. The diagram
sketches a section at constant t and ϕ. Surfaces of constant y are ring-shaped, while x
is a polar coordinate on S2. Infinity lies at x = y = −1.

so that (recall (1.7.14))

√
deth =

λ2ν1/2(ξ3 − ξF )3/2(ξ3 − ξ1)
ξ2
F A3(x− ξ3)2

=
4(ξ3 − ξF )3/2(ξF − ξ1)

A3ν3/2ξ3
F (ξ3 − ξ1)2(ξ2 − ξ1)2

× 1
(x− ξ3)2

.

By integration in x ∈ (ξ1, ξ2) and in the angular variables ϕ̃, ϕ̂ ∈ (0, 2π) one obtains
the area of the sections of the event horizon:

A =
16π2

A3ν3/2

(ξ3 − ξF )3/2(ξF − ξ1)
ξ3
F (ξ3 − ξ2)(ξ2 − ξ1)(ξ3 − ξ1)2

. (1.7.43)

If ν = ν∗ then the black ring and the black hole degenerate to the same
solution with ξ2 = ξF = ξ3. This is the µ = a2 limit of the five-dimensional
rotating black hole, for which the horizon disappears, and is replaced by a naked
singularity.

The mass m and the angular momentum J can be calculated using Komar
integrals:

m =
3π

2A2

ξF − ξ1

νξ2
1(ξ2 − ξ1)(ξ3 − ξ1)

, (1.7.44)

J =
2π

A3

(ξF − ξ1)5/2

ν3/2ξ3
F (ξ2 − ξ1)2(ξ3 − ξ1)2

. (1.7.45)

Thus, m and J are rather complicated functions of the independent parameters
A and ν in view of (1.7.15).
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−∞← y

z →∞

z = ξF — event horizon

ergosurface

y = ξ1 (rotation axis)

North pole x = ξ2

South pole x = ξ1

Figure 1.13: Space sections of the Emparan-Reall black holes, with the angular
variables ϕ and ψ suppressed. The x variable runs along the vertical axis, the y
variable runs along the horizontal axis to the right of the ergosurface, while the
z coordinate is used horizontally to the left of the ergosurface. io is the point
at infinity.

Recall that the spin of the Myers-Perry five-dimensional black holes is
bounded from above [52]:

J2

m3
<

32
27π

. (1.7.46)

The corresponding ratio for the solutions here is

J2

m3
=

32
27π

(ξ3 − ξ1)3

(2ξ3 − ξ1 − ξ2)2(ξ2 − ξ1)
. (1.7.47)

These ratios are plotted as a function of ν in Figure 1.14. Rather surprisingly,
this ratio is bounded from below :

J2

m3
> 0.8437

32
27π

. (1.7.48)

For 0.2164 < ν < ν∗, there are two black ring solutions with the same
values of m and J (but different A). Moreover, these satisfy the bound (1.7.46)
so there is also a black hole with the same values of m and J . This shows
that the uniqueness theorems valid in four dimensions do not have a simple
generalisation to five dimensions.
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0.2164 ν∗

1
0.8437

0

Figure 1.14: (27π/32)J2/m3 as a function of ν. The solid line corresponds to
the Emparan-Reall solutions, the dashed line to the Myers-Perry black holes.
The two dotted lines delimit the values for which both solutions with the same
mass and spin exist. From [19].

Some algebra shows that the quantities m,J,ΩH , κ and A satisfy a Smarr
relation

m =
3
2

(
κA
8π

+ ΩHJ

)
. (1.7.49)



Chapter 2

Uniqueness theory

In this chapter we will outline the theory of uniqueness of stationary vacuum
black holes, leading to the “no-hair theorems”.

The uniqueness proofs of black holes can be divided into two parts: the
first is the reduction of the problem to elliptic PDEs, the second is the analysis
of those. The reduction involves the orbit-space metric, as defined in (2.1.1)
below, and part of the analysis is the understanding of the resulting geometry
near Killing horizons. This is the issue that we address in the first section of
this chapter.

2.1 The orbit-space geometry near Killing horizons

Consider a spacetime (M , g) with a Killing vector field X. On any set U on
which X is timelike we can introduce coordinates in which X = ∂t, and the
metric may be written as

g = −V (dt + θidxi)2 + γijdxidxj , ∂tV = ∂tθi = ∂tγij = 0 . (2.1.1)

where γ = γijdxidxj has Riemannian signature. The metric γ is often referred
to as the orbit-space metric.

In well behaved black-hole spacetimes there usually exists a space-like hy-
persurface S ⊂ 〈〈Mext〉〉, the closure S of which intersects a Killing horizon
N (X) in a compact set; then (2.1.1) defines a Riemannian metric γ on S ∩U .
Assume that X is timelike on 〈〈Mext〉〉 near N . The vanishing, or not, of the
surface gravity has a deep impact on the geometry of γ near N (X):

1. Every compact connected component S of S ∩N (X), included in a C2

degenerate Killing horizon N (X), on which X does not vanish, corre-
sponds to a complete asymptotic end of (S , γ) [13].

2. Every connected component S of S ∩N (X), included in a smooth Killing
horizon N (X) on which

κ > 0 ,

corresponds to a totally geodesic boundary of (S , γ), with γ being smooth
up–to–boundary. Moreover

53
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(a) a doubling of (S , γ) across S leads to a smooth metric on the doubled
manifold,

(b) with
√
−g(X, X) extending smoothly to −

√
−g(X,X) across S.

In the Majumdar-Papapetrou solutions of Section 2.5.3, the orbit-space met-
ric γ as in (2.1.1) asymptotes to the usual metric on a round cylinder as the
event horizon is approached. One is therefore tempted to think of degenerate
event horizons as corresponding to asymptotically cylindrical ends of (S , γ).

2.2 Near-horizon geometry

The analysis of the previous section is useful for analysing the elliptic PDEs
aspects of the problem at hand. However, to capture the Lorentzian aspects of
the problem other tools are neeed. A useful one, to study geometry near smooth
null hypersurfaces, is provided by the null Gaussian coordinates of Isenberg and
Moncrief [?]:

Proposition 2.2.1 ([?]) Near a smooth null hypersurface H one can introduce
Gaussian null coordinates, in which the space-time metric g takes the form

g = xϕdv2 + 2dvdx + 2xhadxadv + habdxadxb , (2.2.1)

with H given by the equation {x = 0}.

Proof: Let S ⊂ H be any (n− 1)–dimensional submanifold of H , transverse
to the null generators of H . Let xa be any local coordinate system on S, and
let `|S be any field of null vectors, defined on S, tangent to the generators of
H . Solving the equation ∇`` = 0, with initial values `|S on S, one obtains a
null vector field ` defined on a H –neighborhood V ⊂ H of S, tangent to the
generators of H . One can extend xa to V by solving the equation `(xa) = 0.
The function v|H is defined by solving the equation `(v) = 1 with initial value
v|S = 0. Passing to a subset of V if necessary, this defines a global coordinate
system (v, xa) on V . By construction we have ` = ∂v on V , in particular
gvv = 0 on V . Further, ` is normal to H because H is a null surface, which
implies gva = 0 on V .

Let, next, ¯̀|V be a field of null vectors on V defined uniquely by the con-
ditions

g(¯̀|V , `) = 1 , g(¯̀|V , ∂A) = 0 . (2.2.2)

The first equation implies that ¯̀|V is everywhere transverse to V . Then we
define ¯̀ in a space-time neighborhood U ⊂ M of V by solving the geodesic
equation ∇¯̀¯̀ = 0 with initial value ¯̀|V at V . The coordinates (v, xa) are
extended to U by solving the equations ¯̀(v) = ¯̀(xa) = 0, and the coordinate
x is defined by solving the equation ¯̀(x) = 1, with initial value x = 0 at V .
Passing to a subset of U if necessary, this defines a global coordinate system
(v, x, xa) on U .

By construction we have
¯̀= ∂x , (2.2.3)
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hence ∂x is a null, geodesic, vector field on U . In particular

gxx ≡ g(∂x, ∂x) = 0 .

Let (zA) = (x, xa), and note that

¯̀
(
g(¯̀, ∂A)

)
= g(¯̀,∇¯̀∂A) = g(¯̀,∇∂x∂A) = g(¯̀,∇∂A

∂x)

= g(¯̀,∇∂A
¯̀) =

1
2
∂A

(
g(¯̀, ¯̀)

)
= 0 .

This shows that the components gxA of the metric are x–independent. On S
we have gxv = 1 and gxa = 0 by (2.2.2), which finishes the proof. 2

Example 2.2.2 An example of the coordinate system above is obtained by taking
H to be the light-cone of the origin in (n + 1)–dimensional Minkowski space-time,
with x = r − t, y = (t + r)/2, then the Minkowski metric η takes the form

η = −dt2 + dr2 + r2dΩ2 = 2dx dy +
(x + 2y)2

4
dΩ2 .

By standard causality theory, any null achronal hypersurfaces H is the
union of Lipschitz topological hypersurfaces. Furthermore, through every point
p ∈ H there is a future inextendible null geodesic entirely contained in H
(though it may leave H when followed to the past of p). Such geodesics are
called generators. A topological submanifold S of H will be called a local
section, or simply section, if S meets the generators of H transversally; it will
be called a cross-section if it meets all the generators precisely once.

Let S be any smooth compact cross-section of the horizon, the average
surface gravity 〈κ〉S is defined as

〈κ〉S = − 1
|S|

∫

S
ϕdµh , (2.2.4)

where dµh is the measure induced by the metric h on S, and |S| is the volume of
S. We emphasise that this is defined regardless of whether or not the stationary
Killing vector is tangent to the null generators of the hypersurface.

On a degenerate Killing horizon the surface gravity vanishes, so that the
function ϕ in (2.2.1) can itself be written as xA, for some smooth function A.
The vacuum Einstein equations imply (see [?, eq. (2.9)] in dimension four and
[?, eq. (5.9)] in higher dimensions)

R̊ab =
1
2
h̊åhb − D̊(åhb) , (2.2.5)

where R̊ab is the Ricci tensor of h̊ab := hab|r=0, and D̊ is the covariant derivative
thereof, while h̊a := ha|r=0. The Einstein equations also determine Å := A|r=0

uniquely in terms of h̊a and h̊ab:

Å =
1
2
h̊ab

(̊
håhb − D̊åhb

)
(2.2.6)
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(this equation follows again e.g. from [?, eq. (2.9)] in dimension four, and
can be checked by a calculation in all higher dimensions). We have:1 or axial
symmetry in space-time dimension four [?]:

Theorem 2.2.3 ( [?]) Let the space-time dimension be n + 1, n ≥ 3, suppose
that a degenerate Killing horizon N has a compact cross-section, and that
h̊a = ∂aλ for some function λ (which is necessarily the case in vacuum static
space-times). Then (2.2.5) implies h̊a ≡ 0, so that h̊ab is Ricci-flat.

Theorem 2.2.4 ( [?]) In space-time dimension four and in vacuum, suppose
that a degenerate Killing horizon N has a spherical cross-section, and that
(M , g) admits a second Killing vector field with periodic orbits. For every con-
nected component N0 of N there exists an embedding into a Kerr space-time
which preserves h̊a, h̊ab and Å.

It would be of great interest to obtain more information about solutions of
(2.2.5), in all dimensions, without any restrictive conditions. For instance, it
is expected that the hypothesis of the existence of a second vector field is not
necessary for Theorem 2.2.4, and it would of interest to prove, or disprove, this.

In the four-dimensional static case, Theorem 2.2.3 enforces toroidal topol-
ogy of cross-sections of N , with a flat h̊ab. On the other hand, in the four-
dimensional axi-symmetric case, Theorem 2.2.4 guarantees that the geometry
tends to a Kerr one, up to second order errors, when the horizon is approached.
So, in the degenerate case, the vacuum equations impose strong restrictions on
the near-horizon geometry.

It seems that this is not the case any more for non-degenerate horizons, at
least in the analytic setting: Indeed, we claim that for any triple (N, h̊a, h̊ab),
where N is a two-dimensional analytic manifold (compact or not), h̊a is an
analytic one-form on N , and h̊ab is an analytic Riemannian metric on N , there
exists a vacuum space-time (M , g) with a bifurcate (and thus non-degenerate)
Killing horizon, so that the metric g takes the form (2.2.1) near each Killing
horizon branching out of the bifurcation surface S ≈ N , with h̊ab = hab|r=0

and h̊a = ha|r=0; in fact h̊ab is the metric induced by g on S. When N is the
two-dimensional torus T2 this can be inferred from [?] as follows: using [?,
Theorem (2)] with (φ, βa, gab)|t=0 = (0, 2̊ha, h̊ab) one obtains a vacuum space-
time (M ′ = S1 × T2 × (−ε, ε), g′) with a compact Cauchy horizon S1 × T2 and
Killing vector K tangent to the S1 factor of M ′. One can then pass to a covering
space where S1 is replaced by R, and use a construction of Rácz and Wald [?,
Theorem 4.2] to obtain the desired M containing the bifurcate horizon. This
argument generalises to any analytic (N, h̊a, h̊ab) without difficulties.

2.3 Asymptotically flat stationary metrics

There exists several ways of defining asymptotic flatness, all of them roughly
equivalent in vacuum. We will adapt a Cauchy data point of view, as it ap-
pears to be the least restrictive. So, a space-time (M , g) will be said to possess

1Some partial results with a non-zero cosmological constant have also been proved in [?].
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an asymptotically flat end if M contains a spacelike hypersurface Sext diffeo-
morphic to Rn \ B(R), where B(R) is a coordinate ball of radius R, with the
following properties: there exists a constant α > 0 such that, in local coordi-
nates on Sext obtained from Rn \ B(R), the metric γ induced by g on Sext,
and the extrinsic curvature tensor K of Sext, satisfy the fall-off conditions, for
some k > 1,

γij − δij = Ok(r−α) , Kij = Ok−1(r−1−α) , (2.3.1)

where we write f = Ok(rα) if f satisfies

∂k1 . . . ∂k`
f = O(rα−`) , 0 ≤ ` ≤ k . (2.3.2)

For simplicity we assume that the space-time is vacuum, though similar results
hold in general under appropriate conditions on matter fields, see [?, ?] and
references therein. Along any spacelike hypersurface S , a Killing vector field
X of (M , g) can be decomposed as

X = Nn + Y ,

where Y is tangent to S , and n is the unit future-directed normal to Sext. The
fields N and Y are called “Killing initial data”, or KID for short. The vacuum
field equations, together with the Killing equations imply the following set of
equations on S :

DiYj + DjYi = 2NKij , (2.3.3)
Rij(γ) + Kk

kKij − 2KikK
k
j −N−1(LY Kij + DiDjN) = 0 , (2.3.4)

where Rij(γ) is the Ricci tensor of γ.
Under the boundary conditions (2.3.1), an analysis of these equations pro-

vides detailed information about the asymptotic behavior of (N, Y ). In particu-
lar one can prove that if the asymptotic region Sext is contained in a hypersur-
face S satisfying the requirements of the positive energy theorem, and if X is
timelike along Sext, then (N, Y i) →r→∞ (A0, Ai), where the Aµ’s are constants
satisfying (A0)2 >

∑
i(A

i)2 [?, ?]. One can then choose adapted coordinates so
that the metric can be, locally, written as

g = −V 2(dt + θidxi

︸ ︷︷ ︸
=θ

)2 + γijdxidxj

︸ ︷︷ ︸
=γ

, (2.3.5)

with

∂tV = ∂tθ = ∂tγ = 0 (2.3.6)
γij − δij = Ok(r−α) , θi = Ok(r−α) , V − 1 = Ok(r−α) . (2.3.7)

As discussed in more detail in [?], in γ-harmonic coordinates, and in e.g.
a maximal time-slicing, the vacuum equations for g form a quasi-linear elliptic
system with diagonal principal part, with principal symbol identical to that
of the scalar Laplace operator. Methods known in principle show that, in
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this “gauge”, all metric functions have a full asymptotic expansion in terms of
powers of ln r and inverse powers of r. In the new coordinates we can in fact
take

α = n− 2 . (2.3.8)

By inspection of the equations one can further infer that the leading order
corrections in the metric can be written in the Schwarzschild form (1.2.40).

Solutions without ln r terms are of special interest, because the associated
space-times have smooth conformal completion at infinity. In even space-time
dimension initial data sets containing such asymptotic regions, when close
enough to Minkowskian data, lead to asymptotically simple space-times [?, ?, ?].
It has been shown by Beig and Simon that logarithmic terms can always be got-
ten rid of by a change of coordinates in space dimension three when the mass
is non-zero [?, ?]. This has been generalised in [?] to all stationary metrics in
even space-dimension n ≥ 6, and to static metrics with non-vanishing mass in
n = 5.

2.4 Domains of outer communications, event hori-
zons

A key notion in the theory of asymptotically flat black holes is that of the
domain of outer communications, defined as follows: For t ∈ R let φt[X] :
M → M denote the one-parameter group of diffeomorphisms generated by
X; we will write φt for φt[X] whenever ambiguities are unlikely to occur. Let
Sext be as in Section 2.3, the exterior region Mext and the domain of outer
communications 〈〈Mext〉〉 are then defined as2

Mext := ∪tφt(Sext) , 〈〈Mext〉〉 = I+(Mext) ∩ I−(Mext) . (2.4.1)

The black hole region B and the black hole event horizon H + are defined as

B = M \ I−(Mext) , H + = ∂B .

The white hole region W and the white hole event horizon H − are defined as
above after changing time orientation:

W = M \ I+(Mext) , H − = ∂W .

It follows that the boundaries of 〈〈Mext〉〉 are included in the event horizons.
We set

E ± = ∂〈〈Mext〉〉 ∩ I±(Mext) , E = E + ∪ E − . (2.4.2)

There is considerable freedom in choosing the asymptotic region Sext. How-
ever, it is not too difficult to show that I±(Mext), and hence 〈〈Mext〉〉, H ±

and E ±, are independent of the choice of Sext as long as the associated Mext’s
overlap.

2Recall that I−(Ω), respectively J−(Ω), is the set covered by past-directed timelike, re-
spectively causal, curves originating from Ω, while İ− denotes the boundary of I−, etc. The
sets I+, etc., are defined as I−, etc., after changing time-orientation.
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2.5 Uniqueness theorems

It is widely expected that the Kerr metrics provide the only stationary, regular,
vacuum, four-dimensional black holes. In spite of many works on the subject
(see, e.g., [?, ?, 24, ?, ?, ?, ?, ?] and references therein), the question is far from
being settled.

To describe the current state of affairs, some terminology is needed. A
Killing vector X is said to be complete if its orbits are complete, i.e., for every
p ∈ M the orbit φt[X](p) of X is defined for all t ∈ R; X is called stationary if
it is timelike at large distances in the asymptotically flat region. Following [?],
we introduce the following:

Definition 2.5.1 Let (M , g) be a space-time containing an asymptotically flat
end Sext, and let X be stationary Killing vector field on M . We will say
that (M , g, X) is I+–regular if X is complete, if the domain of outer commu-
nications 〈〈Mext〉〉 is globally hyperbolic, and if 〈〈Mext〉〉 contains a spacelike,
connected, acausal hypersurface S ⊃ Sext, the closure S of which is a topo-
logical manifold with boundary, consisting of the union of a compact set and of
a finite number of asymptotic ends, such that the boundary ∂S := S \S is a
topological manifold satisfying

∂S ⊂ E + := ∂〈〈Mext〉〉 ∩ I+(Mext) , (2.5.1)

with ∂S meeting every generator of E + precisely once.

Some comments about the definition are in order. First one requires completeness
of the orbits of the stationary Killing vector because of the need of an action of R
on M by isometries. Next, one requires global hyperbolicity of the domain of outer
communications to guarantee its simple connectedness, to make sure that the area
theorem [?] holds, and to avoid causality violations as well as certain kinds of naked
singularities in 〈〈Mext〉〉. Further, the existence of a well-behaved spacelike hyper-
surface gives reasonable control of the geometry of 〈〈Mext〉〉, and is a prerequisite
to any elliptic PDEs analysis, as is extensively needed for the problem at hand. The
existence of compact cross-sections of the future event horizon prevents singularities
on the future part of the boundary of the domain of outer communications, e.g. of
the kind that occur in the Curzon solutions [?, ?], and eventually, together with the
area theorem, guarantees the smoothness of that boundary.

Obviously I+ could have been replaced by I− throughout the definition, leading
to the notion of I−–regular black holes.

The requirement (2.5.1) appears to be somewhat unnatural, as there are per-
fectly well-behaved hypersurfaces in, e.g., the Schwarzschild space-time which do
not satisfy this condition, but there does not seem to be a coherent theory without
assuming some version of (2.5.1). The main point of this condition is to avoid cer-
tain zeros of the stationary Killing vector X at the boundary of S , which otherwise
create various difficulties; e.g.,, it is not clear how to guarantee then smoothness of
E +, or the “static-or-axisymmetric alternative”.3

Needless to say, I+–regularity holds for the standard extensions of the solutions
of main interestst: Schwarzschild, Reissner-Nordström, Kerr-Newman, Majumdar-
Papapetrou, or Emparan-Reall solutions.
3In fact, (2.5.1) is not needed for static metric if, e.g., one assumes at the outset that

all horizons are non-degenerate, as we do in Theorem 2.5.3 below, see the discussion in the
Corrigendum to [13].
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We have the following, long-standing conjecture, it being understood that
both the Minkowski and the Schwarzschild space-times are members of the Kerr
family:

Conjecture 2.5.2 Let (M , g) be a stationary. vacuum, four-dimensional space-
time containing a spacelike, connected, acausal hypersurface S , such that S is
a topological manifold with boundary, consisting of the union of a compact set
and of a finite number of asymptotically flat ends. Suppose that there exists on
M a complete stationary Killing vector X, that 〈〈Mext〉〉 is globally hyperbolic,
and that ∂S ⊂ M \ 〈〈Mext〉〉. Then 〈〈Mext〉〉 is isometric to the domain of
outer communications of a Kerr space-time.

2.5.1 Analytic, connected, four dimensional vacuum black holes

The proof of the following, restricted version of Conjecture 2.5.2 can be found
in [?]:

Theorem 2.5.3 Let (M , g) be a vacuum, analytic, asymptotically flat, four-
dimensional space-time with a stationary Killing vector X such that (M , g, X)
is I+–regular. If E + is connected and mean-non-degenerate, then 〈〈Mext〉〉 is
isometric to the domain of outer communications of a Kerr space-time.

Theorem 2.5.3 finds its roots in work by Carter and Robinson [?, ?], with
further key steps of the proof due to Hawking [?] and Sudarsky and Wald [?].
It should be emphasised that the hypothesis of analyticity and non-degeneracy
are highly unsatisfactory, and one believes that they are not needed for the
conclusion.One also believes that no solutions with more than one component
of E + are I+–regular; this has been established so far only for some special
cases [?, ?].

Partial results concerning uniqueness of higher dimensional black holes have
been obtained by Hollands and Yazadjiev [?], compare [?, ?, ?, ?, ?].

The proof of Theorem 2.5.3 can be outlined as follows: First, the event
horizon in a smooth or analytic space-time is a priori only a Lipschitz surface;
so the starting point of the analysis is provided by a result in [?], that event
horizons in I+–regular stationary black hole space-times are as differentiable as
the differentiability of the metric allows. One then shows [?]4 that either a) the
stationary Killing vector is tangent to the generators of the event horizon, or b)
there exists a second Killing vector defined near the event horizon. The remain-
ing analysis relies heavily on the fact that the domain of outer communications
is simply connected [?] (compare [?]).

In case a) one shows that the domain of outer communications contains a
maximal (mean curvature zero) spacelike hypersurface [?]; to be able to invoke
that last reference one might need, first, to extend 〈〈Mext〉〉 using the construc-
tion in [?]. This allows one to establish staticity [?], and one concludes using
Theorem 2.5.4 below.

4Compare [?]; the result, proved by Hawking in space-dimension n = 3 [?, ?], has been
generalised to n ≥ 4 by Hollands, Ishibashi and Wald [?].
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In case b), analyticity and simple connectedness imply [?] that the isometry
group of (M , g) contains a U(1) factor, with non-empty axis of rotation. A
delicate argument, which finds its roots in the work of Carter [?], proves that
the area function

W := −det(g(Ka,Kb)) , a, b = 1, 2

where Ka are the stationary and the periodic Killing vector, is strictly positive
on the domain of outer communications. As part of the analysis one needs
to exclude the possibility that the stationary Killing vector becomes null on
the axis of rotation within the domain of outer communications — this is the
contents of the Ergoset theorem. Classical results on group actions on simply
connected manifolds [?, ?] show that the domain of outer communications is
diffeomorphic to R × (R3 \ B(1)), with the action of the isometry group by
translations in the first factor, and by rotations around an axis in R3. The
uniformisation theorem allows one to establish that

√
W can be used as the

usual polar coordinate ρ on R3, leading to a coordinate system in which the field
equations reduce to a harmonic map with values in two-dimensional hyperbolic
space. The map is singular at the rotation axis (compare [?]), with rather
delicate singularity structure at points where the event horizon meets the axis.
A uniqueness theorem for such maps [?, ?] achieves the proof.

2.5.2 Static case

Assuming staticity, i.e., stationarity and hypersurface-orthogonality of the sta-
tionary Killing vector, a much more satisfactory result is available in space
dimensions less than or equal to seven, and in higher dimensions on manifolds
on which the Riemannian rigid positive energy theorem holds: no analyticity
conditions are needed, and non-connected configurations are excluded, without
any a priori restrictions on the gradient of the norm of the static Killing vector
at event horizons.

More precisely, we shall say that a manifold Ŝ is of positive energy type
if there are no asymptotically flat complete Riemannian metrics on Ŝ with
positive scalar curvature and vanishing mass except perhaps for a flat one. This
property has been proved so far for all n–dimensional manifolds Ŝ obtained
by removing a finite number of points from a compact manifold of dimension
3 ≤ n ≤ 7 [?], or under the hypothesis that Ŝ is spin whatever n ≥ 3, and is
expected to be true in general [?, ?].

We have the following result, which finds its roots in the work of Israel [?],
with further simplifications by Robinson [?], and with a significant strength-
ening by Bunting and Masood-ul-Alam [4]; the proof of the version presented
here can be found in [?, 13]:5

Theorem 2.5.4 Under the hypotheses of Conjecture 2.5.2, suppose moreover
that X is hypersurface-orthogonal. Let Ŝ denote the manifold obtained by
doubling S across the non-degenerate components of its boundary and com-
pactifying, in the doubled manifold, all asymptotically flat regions but one to a

5See [?] or the arXiv version of [13] for corrections to some of the claims in [13, ?].
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point. If Ŝ is of positive energy type, then 〈〈Mext〉〉 is isometric to the domain
of outer communications of a Schwarzschild space-time.

Remark 2.5.5 As a corollary of Theorem 2.5.4 one obtains non-existence of
static, I+–regular, vacuum black holes with some components of the horizon
degenerate. As observed in [?], if the space-time dimension is four the result
follows immediately from Theorem 2.2.3 and from simple connectedness of the
domain of outer communications [?], but this does not seem to generalise to
higher dimensions in any obvious way.

2.5.3 Multi-black hole solutions

In this section we assume that the space-time dimension is four. Space-times
containing several black holes seem to be of particular interest, but we have just
seen that, under the conditions spelled-out in Theorem 2.5.4, no such vacuum
solutions exist in the static class. However, the Einstein-Maxwell equations
admit static solutions with several black holes: the Majumdar-Papapetrou solu-
tions. As already described in Section 2.5.3, the metric g and the electromag-
netic potential A take the form [43, 59] (compare [14, 23])

g = −u−2dt2 + u2(dx2 + dy2 + dz2) , A = u−1dt , (2.5.2)
u = 1 +

∑I
i=1

µi

|~x−~ai| , (2.5.3)

for some positive constants µi (the electric charges carried by the punctures
~x = ~ai). Standard MP black holes are obtained if the coordinates xµ of (1.6.1)
cover the range R× (R3 \ {~ai}) for a finite set of points ~ai ∈ R3, i = 1, . . . , I.

The case I = 1 is a special case of the so-called Reissner-Nordström metrics,
which are the charged, spherically symmetric (connected) generalisations of the
Schwarzschild black holes.

The static I+–regular electro-vacuum black holes are well understood: In-
deed, the analysis in [?, 44, 65, 66] (compare [?]5), leads to:

Theorem 2.5.6 Every domain of outer communications in a static, electro-
vacuum, black hole space-time satisfying the hypotheses of Conjecture 2.5.2 and
which does not contain degenerate horizons is isometric to a domain of outer
communications of a Reissner-Nordström black hole.

The relevance of the standard MP black holes follows now from the following
result [16]:

Theorem 2.5.7 Every domain of outer communications in a static, electro-
vacuum, black hole space-time satisfying the hypotheses of Conjecture 2.5.2 and
which contains degenerate horizons is isometric to a domain of outer commu-
nications of a standard MP space-time.

It thus follows that the MP family provides the only static, electro-vacuum,
I+–regular black holes with non-connected horizons.
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Chapter 3

Introduction to
pseudo-Riemannian geometry

3.1 Vector fields

Let M be an n-dimensional manifold. Physicists often think of vector fields in
terms of coordinate systems: a vector field X is an object which in a coordinate
system {xi} is represented by a collection of functions Xi. In a new coordinate
system {yj} the field X is represented by a new set of functions:

Xi(x) → Xj(y) := Xj(x(y))
∂yi

∂xj
(x(y)) . (3.1.1)

(The summation convention is used throughout, so that the index j has to be
summed over.)

The notion of a vector field finds its roots in the notion of the tangent to a
curve, say s → γ(s). If we use local coordinates to write γ(s) as (γ1(s), γ2(s), . . . , γn(s)),
the tangent to that curve at the point γ(s) is defined as the set of numbers

(γ̇1(s), γ̇2(s), . . . , γ̇n(s)) .

Consider, then, a curve γ(s) given in a coordinate system xi and let us perform
a change of coordinates xi → yj(xi). In the new coordinates yj the curve γ is
represented by the functions yj(γi(s)), with new tangent

dyj

ds
(y(γ(s))) =

∂yj

∂xi
(γ(s))γ̇i(s) .

This motivates (3.1.1).
In modern differential geometry a different approach is taken: one identifies

vector fields with homogeneous first order differential operators acting on real
valued functions f : M → R. In local coordinates {xi} a vector field X will be
written as Xi∂i, where the Xi’s are the “physicists’s functions” just mentioned.
This means that the action of X on functions is given by the formula

X(f) := Xi∂if (3.1.2)

65
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(recall that ∂i is the partial derivative with respect to the coordinate xi). Con-
versely, given some abstract derivative operator X, the (perhaps locally defined)
functions Xi in (3.1.2) can be found by acting on the coordinate functions:

X(xi) = Xi . (3.1.3)

One justification for the differential operator approach is the fact that the tan-
gent γ̇ to a curve γ can be calculated — in a way independent of the coordinate
system {xi} chosen to represent γ — using the equation

γ̇(f) :=
d(f ◦ γ)

dt
.

Indeed, if γ is represented as γ(t) = {xi = γi(t)} within a coordinate patch,
then we have

d(f ◦ γ)(t)
dt

=
d(f(γ(t)))

dt
=

dγi(t)
dt

(∂if)(γ(t)) ,

recovering the previous coordinate formula γ̇ = (dγi/dt). An alternative justi-
fication is that this approach does encode the transformation law in a natural
way: indeed, from (3.1.3) and (3.1.2) we have

X(yi) = Xj ∂yi

∂xj
,

reproducing (3.1.1).
At any given point p ∈ M the set of vectors forms a vector space, denoted

by TpM . The collection of all the tangent spaces is called the tangent bundle
to M , denoted by TM .

Covector fields are fields dual to vector fields. It is convenient to define

dxi(X) := Xi ,

where Xi is as in (3.1.2). With this definition the (locally defined) bases
{∂i}i=1,...,dim M of TM and {dxj}i=1,...,dim M of T ∗M are dual to each other:

〈dxi, ∂j〉 := dxi(∂j) = δi
j ,

where δi
j is the Kronecker delta, equal to one when i = j and zero otherwise.

Vector fields can be added and multiplied by functions in the obvious way.
Another useful operation is the Lie bracket, or commutator, defined as

[X, Y ](f) := X(Y (f))− Y (X(f)) . (3.1.4)

One needs to check that this does indeed define a new vector field: the simplest
way is to use local coordinates,

[X,Y ](f) = Xj∂j(Y i∂if)− Y j∂j(Xi∂if)
= Xj(∂j(Y i)∂if + Y i∂j∂if)− Y j(∂j(Xi)∂if + Xi∂j∂if)
= (Xj∂jY

i − Y j∂jX
i)∂if + XjY i∂j∂if − Y jXi∂j∂if︸ ︷︷ ︸

=XjY i (∂j∂if − ∂i∂jf)︸ ︷︷ ︸
0

= (Xj∂jY
i − Y j∂jX

i)∂if , (3.1.5)
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which is indeed a homogeneous first order differential operator. Here we have
used the symmetry of the matrix of second derivatives of twice differentiable
functions. We note that the last line of (3.1.5) also gives an explicit coordinate
expression for the commutator of two differentiable vector fields.

Similarly, at any given point p ∈ M the set of covectors forms a vector
space, denoted by T ∗p M . The collection of all the tangent spaces is called the
cotangent bundle to M , denoted by T ∗M .

3.2 Tensor products

If ϕ and θ are covectors we can define a bilinear map using the formula

(ϕ⊗ θ)(X, Y ) = ϕ(X)θ(Y ) . (3.2.1)

For example
(dx1 ⊗ dx2)(X, Y ) = X1Y 2 .

Using this notation we have

g(X, Y ) = g(Xi∂i, Y
j∂j) = g(∂j , ∂j)︸ ︷︷ ︸

=:gij

Xi︸︷︷︸
dxi(X)

Y j︸︷︷︸
dxj(Y )︸ ︷︷ ︸

(dxi⊗dxj(X,Y )

= (gijdxi ⊗ dxj)(X, Y )

We will write dxidxj for the symmetric product,

dxidxj :=
1
2
(dxi ⊗ dxj + dxj ⊗ dxi) ,

and dxi ∧ dxj for the anti-symmetric one,

dxi ∧ dxj :=
1
2
(dxi ⊗ dxj − dxj ⊗ dxi) .

It should be clear how this generalises: the tensors dxi⊗ dxj ⊗ dxk, defined
as

(dxi ⊗ dxj ⊗ dxk)(X, Y, Z) = XiY jZk ,

form a basis of three-linear maps on the space of vectors, which are objects of
the form

X = Xijkdxi ⊗ dxj ⊗ dxk .

Here X is a called tensor of valence (0, 3). Each index transforms as for a
covector:

X = Xijkdxi ⊗ dxj ⊗ dxk = Xijk
∂xi

∂ym

∂xj

∂y`

∂xk

∂yn
dym ⊗ dy` ⊗ dyn .

It is sometimes useful to think of vectors as linear maps on co-vectors, using
a formula which looks funny when first met: if θ is a covector, and X is a vector,
then

X(θ) := θ(X) .
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So if θ = θidxi and X = Xi∂i then

θ(X) = θiX
i = Xiθi = X(θ) .

It then makes sense to define e.g. ∂i ⊗ ∂j as a bilinear map on covectors:

(∂i ⊗ ∂j)(θ, ψ) := θiψj .

And one can define a map ∂i ⊗ dxj which is linear on forms in the first slot,
and linear in vectors in the second slot as

(∂i ⊗ dxj)(θ, X) := ∂i(θ)dxj(X) = θiX
j . (3.2.2)

The ∂i ⊗ dxj ’s form the basis of the space of tensors of rank (1, 1):

T = T i
j∂i ⊗ dxj .

Generally, a tensor of valence, or rank, (r, s) can be defined as an object
which has r vector indices and s covector indices, so that it transforms as

Si1...ir
j1...js → Sm1...mr

`1...`s

∂yi1

∂xm1
. . .

∂yis

∂xmr

∂x`1

∂yj1
. . .

∂x`s

∂yjs

For example, if X = Xi∂i and Y = Y j∂j are vectors, then X⊗Y = XiY j∂i⊗∂j

forms a contravariant tensor of valence two.
Tensors of same valence can be added in the obvious way: e.g.

(A + B)(X,Y ) := A(X,Y ) + B(X,Y ) ⇐⇒ (A + B)ij = Aij + Bij .

Tensors can be multiplied by scalars: e.g.

(fA)(X, Y, Z) := fA(X, Y, Z) ⇐⇒ f(Aijk) := (fAijk) .

Finally, we have seen in (3.2.1) how to take tensor products for one forms, and
in (3.2.2) how to take a tensor product of a vector and a one form, but this
can also be done for higher order tensor; e.g., if S is of valence (a, b) and T is
a multilinear map of valence (c, d), then S ⊗ T is a multilinear map of valence
(a + c, b + d), defined as

(S ⊗ T )( θ, . . .︸ ︷︷ ︸
a covectors and b vectors

, ψ, . . .︸ ︷︷ ︸
c covectors and d vectors

) := S(θ, . . .)T (ψ, . . .) .

3.2.1 Contractions

Given a tensor field Si
j with one index down and one index up one can perform

the sum
Si

i .

This defines a scalar, i.e., a function on the manifold. Indeed, using the trans-
formation rule

Si
j → S̄`

k = Si
j
∂xj

∂yk

∂y`

∂xi
,
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one finds

S̄`
` = Si

j
∂xj

∂y`

∂y`

∂xi
︸ ︷︷ ︸

δj
i

= Si
i ,

as desired.
One can similarly do contractions on higher valence tensors, e.g.

Si1i2...ir
j1j2j3...js → S`i2...ir

j1`j3...js .

After contraction, a tensor of rank (r + 1, s + 1) becomes of rank (r, s).

3.3 Raising and lowering of indices

Let g be a symmetric two-covariant tensor field on M , by definition such an
object is the assignment to each point p ∈ M of a bilinear map g(p) from
TpM × TpM to R, with the additional property

g(X, Y ) = g(Y, X) .

In this work the symbol g will be reserved to non-degenerate symmetric two-
covariant tensor fields. It is usual to simply write g for g(p), the point p being
implicitly understood. We will sometimes write gp for g(p) when referencing p
will be useful.

The usual Sylvester’s inertia theorem tells us that at each p the map g will
have a well defined signature; clearly this signature will be point-independent
on a connected manifold when g is non-degenerate. A pair (M, g) is said to be a
Riemannian manifold when the signature of g is (dimM, 0); equivalently, when
g is a positive definite bilinear form on every product TpM×TpM . A pair (M, g)
is said to be a Lorentzian manifold when the signature of g is (dimM − 1, 1).
One talks about pseudo-Riemannian manifolds whatever the signature of g,
as long as g is non-degenerate, but we will only encounter Riemannian and
Lorentzian metrics in this work.

Since g is non-degenerate it induces an isomorphism

[ : TpM → T ∗p M

by the formula
X[(Y ) = g(X,Y ) .

In local coordinates this gives

X[ = gijX
idxj =: Xjdxj . (3.3.1)

This last equality defines Xj — “the vector Xj with the index j lowered”:

Xi := gijX
j . (3.3.2)

The operation (3.3.2) is called the lowering of indices in the physics literature
and, again in the physics literature, one does not make a distinction between
the one-form X[ and the vector X.
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The inverse map will be denoted by ] and is called the raising of indices;
from (3.3.1) we obviously have

α] = gijαi∂j =: αi∂i ⇐⇒ dxi(α]) = αi = gijαj ,

where gij is the matrix inverse to gij . For example,

(dxi)] = gik∂k .

Clearly gij , understood as the matrix of a bilinear form on T ∗p M , has the same
signature as g, and can be used to define a scalar product g] on T ∗p (M):

g](α, β) := g(α], β]) ⇐⇒ g](dxi, dxj) = gij .

This last equality is justified as follows:

g](dxi, dxj) = g((dxi)], (dxj)]) = g(gik∂k, g
j`∂`) = gikgk`︸ ︷︷ ︸

=δi
`

gj` = gji = gij .

It is convenient to use the same letter g for g] — physicists do it all the time
— or for scalar products induced by g on all the remaining tensor bundles, and
we will sometimes do so.

3.4 Covariant derivatives

When dealing with Rn, or subsets thereof, there exists an obvious prescription
how to differentiate tensor fields: we have then at our disposal the canonical
trivialization {∂i}i=1,...,n of TRn, together with its dual trivialization {dxj}i=1,...,n

of T ∗Rn. We can expand a tensor field T of valence (k, `) in terms of those bases,

T = T i1...ik
j1...j`

∂i1 ⊗ . . .⊗ ∂ik ⊗ dxj1 ⊗ . . .⊗ dxj`

⇐⇒ T i1...ik
j1...j`

= T (dxi1 , . . . , dxik , ∂j1 , . . . , ∂j`
) , (3.4.1)

and differentiate each component T i1...ik
j1...j`

of T separately:

X(T ) := Xi∂i(T i1...ik
j1...j`

)∂i1 ⊗ . . .⊗ ∂ik ⊗ dxj1 ⊗ . . .⊗ dxj` . (3.4.2)

The resulting object does, however, not behave as a tensor under coordinate
transformations: as an example, consider the one-form T = dx on Rn, which
has vanishing derivative as defined by (3.4.2). When expressed in spherical
coordinates we have

T = d(ρ cosϕ) = −ρ sinϕdϕ + cos ϕdρ ,

the partial derivatives of which are non-zero, both with respect to the original
cartesian coordinates (x, y) and to the new spherical ones (ρ, ϕ). The notion of
a covariant derivative, sometimes also referred to as a connection, is introduced
precisely to obtain a notion of derivative which has tensorial properties. By
definition, a covariant derivative is a map which to a vector field X and a
tensor field T assigns a tensor field of the same type as T , denoted by ∇XT ,
with the following properties:
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1. ∇XT is linear with respect to addition both with respect to X and T :

∇X+Y T = ∇XT +∇Y T , ∇X(T + Y ) = ∇XT +∇XY , (3.4.3)

2. ∇XT is linear with respect to multiplication of X by functions f ,

∇fXT = f∇XT , (3.4.4)

3. and, finally, ∇XT satisfies the Leibniz rule under multiplication of T by
a differentiable function f :

∇X(fT ) = f∇XT + X(f)T . (3.4.5)

It is natural to ask whether covariant derivatives do exist at all in general and,
if so, how many of them can there be. First, it immediately follows from the
axioms above that if D and ∇ are two covariant derivatives, then

∆(X,T ) := DXT −∇XT

is multi-linear both with respect to addition and multiplication by functions —
the non-homogeneous terms X(f)T in (3.4.5) cancel out — and is thus a tensor
field. Reciprocally, if D is a covariant derivative and ∆(X, T ) is bilinear with
respect to addition and multiplication by functions, then

∇XT := DXT + ∆(X,T ) (3.4.6)

is a new covariant derivative.
We note that the sum of two covariant derivatives is not a covariant deriva-

tive. However, convex combinations of covariant derivatives, with coefficients
which may vary from point to point, are again covariant derivatives. This re-
mark allows one to construct covariant derivatives using partitions of unity:
Let, indeed, {Oi}i∈N be an open covering of M by coordinate patches and let
ϕi be an associated partition of unity. In each of those coordinate patches we
can decompose a tensor field T as in (3.4.1), and define

DXT :=
∑

i

ϕiX
j∂j(T i1...ik

j1...j`
)∂i1 ⊗ . . .⊗ ∂ik ⊗ dxj1 ⊗ . . .⊗ dxj` . (3.4.7)

This procedure, which depends upon the choice of the coordinate patches and
the choice of the partition of unity, defines one covariant derivative; all other
covariant derivatives are then obtained from D using (3.4.6). Note that (3.4.2)
is a special case of (3.4.7) when there exists a global coordinate system on
M . Thus (3.4.2) does define a covariant derivative. However, the associated
operation on tensor fields will not take the simple form (3.4.2) when we go to
a different coordinate system {yi} in general.

As an illustration, let us describe all possible covariant derivatives on func-
tions: first, it is straightforward to check that the assignment

(X, f) −→ X(f) (3.4.8)
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is a covariant derivative. It then follows that prescribing a covariant derivative
on functions is equivalent to prescribing a field ω of one-forms with

∇Xf = X(f) + ω(X)f . (3.4.9)

Clearly, any one-form
ω(X) = ∇X1

determines a unique covariant derivative on functions by (3.4.9). We are free
to choose ω arbitrarily, and each covariant derivative on functions is uniquely
determined by some ω. For functions the generalization obtained by adding a
ω piece is not very useful, and throughout this work only the covariant deriva-
tive (3.4.8) will be used for functions. The addition of a lower order term
in ∇ becomes, however, a necessity when one wishes to construct tensors by
differentiation of tensors other than functions.

The simplest next possibility is that of a covariant derivative of vector fields.
We will first assume that we are working on a set Ω ⊂ M over which we have
a global trivialization of the tangent bundle TM ; by definition, this means that
there exist vector fields ea, a = 1, . . . , dimM , such that at every point p ∈ Ω the
fields ea(p) ∈ TpM form a basis of TpM .1 Let θa denote the dual trivialization
of T ∗M — by definition the θa’s satisfy

θa(eb) = δa
b .

Given a covariant derivative ∇ on vector fields we set

Γa
b(X) := θa(∇Xeb) ⇐⇒ ∇Xeb = Γa

b(X)ea , (3.4.10a)

Γa
bc := Γa

b(ec) = θa(∇eceb) ⇐⇒ ∇Xeb = Γa
bcX

cea . (3.4.10b)

The (locally) defined) functions Γa
bc are called connection coefficients. If {ea}

is the coordinate basis {∂µ} we shall write

Γµ
αβ := dxµ(∇∂β

∂α)
(
⇐⇒ ∇∂µ∂ν = Γσ

νµ∂σ

)
, (3.4.11)

etc. In this particular case the connection coefficients are usually called Christof-
fel symbols. We will sometimes write Γσ

νµ instead of Γσ
νµ. By using the Leibniz

rule (3.4.5) we find

∇XY = ∇X(Y aea)
= X(Y a)ea + Y a∇Xea

= X(Y a)ea + Y aΓb
a(X)eb

= (X(Y a) + Γa
b(X)Y b)ea

= (X(Y a) + Γa
bcY

bXc)ea , (3.4.12)
1This is the case when Ω is a coordinate patch with coordinates (xi), then the

{ea}a=1,...,dim M can be chosen to be equal to {∂i}a=1,...,dim M . Recall that a manifold is
said to be parallelizable if a basis of TM can be chosen globally over M — in such a case Ω
can be taken equal to M . We emphasize that we are not assuming that M is parallelizable,
so that equations such as (3.4.10) have only a local character in general.
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which gives various equivalent ways of writing ∇XY . The (perhaps only locally
defined) Γa

b’s are linear in X, and the collection (Γa
b)a,b=1,...,dim M is sometimes

referred to as the connection one-form. The one-covariant, one-contravariant
tensor field ∇Y is defined as

∇Y := ∇aY
bθa ⊗ eb ⇐⇒ ∇aY

b := θb(∇eaY ) ⇐⇒ ∇aY
b = ea(Y b) + Γb

caY
c .

(3.4.13)
We will sometimes write ∇a for ∇ea . Further, ∇aY

b will sometimes be written
as Y b

;a. It should be stressed that the notation ∇aY
b does not mean the action

of a derivative operator ∇a on a component Y b of a vector field (as would have
been the case if the Y a’s were treated as functions, as in (3.4.9)), but represents
the tensor field ∇Y as in (3.4.13).

Suppose that we are given a covariant derivative on vector fields, there is
a natural way of inducing a covariant derivative on one-forms by imposing the
condition that the duality operation be compatible with the Leibniz rule: given
two vector fields X and Y together with a field of one-forms α one sets

(∇Xα)(Y ) := X(α(Y ))− α(∇XY ) . (3.4.14)

Let us, first, check that (3.4.14) defines indeed a field of one-forms. The lin-
earity, in the Y variable, with respect to addition is obvious. Next, for any
function f we have

(∇Xα)(fY ) = X(α(fY ))− α(∇X(fY ))
= X(f)α(Y ) + fX(α(Y ))− α(X(f)Y + f∇XY )
= f(∇Xα)(Y ) ,

as should be the case for one-forms. Next, we need to check that ∇ defined
by (3.4.14) does satisfy the remaining axioms imposed on covariant derivatives.
Again multi-linearity with respect to additions is obvious, as well as linearity
with respect to multiplication of X by a function. Finally,

∇X(fα)(Y ) = X(fα(Y ))− fα(∇XY )
= X(f)α(Y ) + f(∇Xα)(Y ) ,

as desired.
The duality pairing

T ∗p M × TpM 3 (α,X) → α(X) ∈ R

is sometimes called contraction. As already pointed out, the operation ∇ on
one forms has been defined in (3.4.14) so as to satisfy the Leibniz rule under
duality pairing:

X(α(Y )) = (∇Xα)(Y ) + α(∇XY ) ; (3.4.15)

this follows directly from (3.4.14). This should not be confused with the Leib-
niz rule under multiplication by functions, which is part of the definition of
a covariant derivative, and therefore always holds. It should be kept in mind
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that (3.4.15) does not necessarily hold for all covariant derivatives: if v∇ is
some covariant derivative on vectors, and f∇ is some covariant derivative on
one-forms, in general one will have

X(α(Y )) 6= (f∇X)α(Y ) + α(v∇XY ) .

Using the basis-expression (3.4.12) of ∇XY and the definition (3.4.14) we
have

∇Xα = Xa∇aαb θb ,

with

∇aαb := (∇eaα)(eb)
= ea(α(eb))− α(∇eaeb)

= ea(αb)− Γc
baαc .

It should now be clear how to extend ∇ to tensors of arbitrary valence: if
T is r covariant and s contravariant one sets

(∇XT )(X1, . . . , Xr, α1, . . . αs) := X
(
T (X1, . . . , Xr, α1, . . . αs)

)

−T (∇XX1, . . . , Xr, α1, . . . αs)− . . .− T (X1, . . . ,∇XXr, α1, . . . αs)
−T (X1, . . . , Xr,∇Xα1, . . . αs)− . . .− T (X1, . . . , Xr, α1, . . .∇Xαs) .

(3.4.16)

The verification that this defines a covariant derivative proceeds in a way iden-
tical to that for one-forms. In a basis we have

∇XT = Xa∇aTa1...ar
b1...bsθa1 ⊗ . . .⊗ θar ⊗ eb1 ⊗ . . .⊗ ebs ,

and (3.4.16) gives

∇aTa1...ar
b1...bs := (∇eaT )(ea1 , . . . , ear , θ

b1 , . . . , θbs)
= ea(Ta1...ar

b1...bs)− Γc
a1aTc...ar

b1...bs − . . .− Γc
araTa1...c

b1...bs

+Γb1
caTa1...ar

c...bs + . . . + Γbs
caTa1...ar

b1...c . (3.4.17)

Carrying over the last two lines of (3.4.16) to the left-hand-side of that equation
one obtains the Leibniz rule for ∇ under pairings of tensors with vectors or
forms. It should be clear from (3.4.16) that ∇ defined by that equation is
the only covariant derivative which agrees with the original one on vectors,
and which satisfies the Leibniz rule under the pairing operation. We will only
consider such covariant derivatives in this work.

3.4.1 Torsion

Let ∇ be a covariant derivative defined for vector fields, the torsion tensor T is
defined by the formula

T (X,Y ) := ∇XY −∇Y X − [X,Y ] , (3.4.18)
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where [X, Y ] is the Lie bracket defined in (3.1.4). We obviously have

T (X,Y ) = −T (Y,X) . (3.4.19)

Let us check that T is actually a tensor field: multi-linearity with respect to
addition is obvious. To check what happens under multiplication by functions,
in view of (3.4.19) it is sufficient to do the calculation for the first slot of T . We
then have

T (fX, Y ) = ∇fXY −∇Y (fX)− [fX, Y ]

= f

(
∇XY −∇Y X

)
− Y (f)X − [fX, Y ] . (3.4.20)

To work out the last commutator term we compute, for any function g,

[fX, Y ](g) = fX(Y (g))− Y (fX(g))︸ ︷︷ ︸
=Y (f)X(g)+fY (X(g))

= f [X, Y ](g)− Y (f)X(g) ,

hence
[fX, Y ] = f [X, Y ]− Y (f)X , (3.4.21)

and the last term here cancels the undesirable before-last term in (3.4.20), as
required.

In a coordinate basis ∂µ we have [∂µ, ∂ν ] = 0 and one finds from (3.4.11)

Tµν := T (∂µ, ∂ν) = (Γσ
νµ − Γσ

µν)∂σ , (3.4.22)

which shows that — in coordinate frames — T is determined by twice the
antisymmetrization of the Γσ

µν ’s over the lower indices. In particular that last
antisymmetrization produces a tensor field.

3.4.2 Transformation law

Consider a coordinate basis ∂xi , it is natural to enquire about the transformation
law of the connection coefficients Γi

jk under a change of coordinates xi →
yk(xi). To make things clear, let us write Γi

jk for the connection coefficients in
the x–coordinates, and Γ̂i

jk for the ones in the y–cordinates. We calculate:

Γi
jk := dxi

(
∇ ∂

∂xk

∂

∂xj

)

= dxi
(
∇ ∂

∂xk

∂y`

∂xj

∂

∂y`

)

= dxi
( ∂2y`

∂xk∂xj

∂

∂y`
+

∂y`

∂xj
∇ ∂

∂xk

∂

∂y`

)

=
∂xi

∂ys
dys

( ∂2y`

∂xk∂xj

∂

∂y`
+

∂y`

∂xj
∇ ∂yr

∂xk
∂

∂yr

∂

∂y`

)

=
∂xi

∂ys
dys

( ∂2y`

∂xk∂xj

∂

∂y`
+

∂y`

∂xj

∂yr

∂xk
∇ ∂

∂yr

∂

∂y`

)

=
∂xi

∂ys

∂2ys

∂xk∂xj
+

∂xi

∂ys

∂y`

∂xj

∂yr

∂xk
Γ̂s

`r . (3.4.23)
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Summarising,

Γi
jk = Γ̂s

`r
∂xi

∂ys

∂y`

∂xj

∂yr

∂xk
+

∂xi

∂ys

∂2ys

∂xk∂xj
. (3.4.24)

Thus, the Γi
jk’s do not form a tensor; instead they transform as a tensor plus

a non-homogeneous second derivatives term above.

3.4.3 The Levi-Civita connection

One of the fundamental results in pseudo-Riemannian geometry is that of ex-
istence of a torsion-free connection which preserves the metric:

Theorem 3.4.1 Let g be a two-covariant symmetric non-degenerate tensor field
on a manifold M . Then there exists a unique connection ∇ such that

1. ∇g = 0,

2. the torsion tensor T of ∇ vanishes.

Proof: Let us start with uniqueness. Suppose, thus, that a connection satis-
fying the above is given, by the Leibniz rule we then have for any vector fields
X, Y and Z,

0 = (∇Xg)(Y, Z) = X(g(Y,Z))− g(∇XY, Z)− g(Y,∇XZ) . (3.4.25)

One then rewrites the same equation applying cyclic permutations to X, Y ,
and Z, with a minus sign for the last equation:

+g(∇XY,Z) + g(Y,∇XZ) = X(g(Y, Z)) ,

+g(∇Y Z, X) + g(Z,∇Y X) = Y (g(Z, X)) ,

−g(∇ZX, Y )− g(X,∇ZY ) = −Z(g(X, Y )) . (3.4.26)

As the torsion tensor vanishes, the sum of the left-hand-sides of these equations
can be manipulated as follows:

g(∇XY, Z) + g(Y,∇XZ) + g(∇Y Z, X) + g(Z,∇Y X)− g(∇ZX,Y )− g(X,∇ZY )
= g(∇XY +∇Y X,Z) + g(Y,∇XZ −∇ZX) + g(X,∇Y Z −∇ZY )
= g(2∇XY − [X,Y ], Z) + g(Y, [X, Z]) + g(X, [Y, Z])
= 2g(∇XY,Z)− g([X,Y ], Z) + g(Y, [X, Z]) + g(X, [Y, Z]) .

This shows that the sum of the three equations (3.4.26) can be rewritten as

2g(∇XY,Z) = g([X,Y ], Z)− g(Y, [X,Z])− g(X, [Y,Z])
+X(g(Y, Z)) + Y (g(Z,X))− Z(g(X,Y )) . (3.4.27)

Since Z is arbitrary and g is non-degenerate, the left-hand-side of this equation
determines the vector field ∇XY uniquely, and uniqueness of ∇ follows.
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To prove existence, let S(X, Y )(Z) be defined as one half of the right-hand-
side of (3.4.27),

S(X, Y )(Z) =
1
2

(
X(g(Y, Z)) + Y (g(Z, X))− Z(g(X, Y ))

+g(Z, [X,Y ])− g(Y, [X, Z])− g(X, [Y, Z])
)

. (3.4.28)

Clearly S is linear with respect to addition in all fields involved. It is straightfor-
ward to check that it is linear with respect to multiplication of Z by a function,
and since g is non-degenerate there exists a unique vector field W (X,Y ) such
that

S(X,Y )(Z) = g(W (X,Y ), Z) .

One readily checks that the assignment

(X, Y ) → W (X, Y )

satisfies all the requirements imposed on a covariant derivative ∇XY . 2

Consider (3.4.27) with X = ∂γ , Y = ∂β and Z = ∂σ,

2g(∇γ∂β, ∂σ) = 2g(Γρ
βγ∂ρ, ∂σ)

= 2gρσΓρ
βγ

= ∂γgβσ + ∂βgγσ − ∂σgβγ

Multiplying this equation by gασ/2 we then obtain

Γα
βγ = 1

2gασ{∂βgσγ + ∂γgσβ − ∂σgβγ} . (3.4.29)

3.4.4 Geodesics and Christoffel symbols

A twice-differentiable curve γ[a, b] → M is said to be a geodesic if it solves the
equation2

∇γ̇ γ̇ = 0 . (3.4.30)

One says that “γ̇ is parallelly propaged along γ”. An alternative, equivalent
approach, is to require γ to be a stationary point of the action

I(γ) =
∫ b

a

1
2
g(γ̇, γ̇)(s)

︸ ︷︷ ︸
=:L (γ,γ̇)

ds . (3.4.31)

Thus,

L (xµ, ẋν) =
1
2
gαβ(xµ)ẋαẋβ .

One readily finds the Euler-Lagrange equations for L :

d

ds

(
∂L

∂ẋµ

)
=

∂L

∂xµ
⇐⇒ d2xµ

ds2
+ Γµ

αβ
dxα

ds

dxβ

ds
= 0 . (3.4.32)

2Strictly speaking, this should be called a geodesic segment, the name “geodesic” being
reserved to maximally extended solutions of this (3.4.30); however, we shall not make the
distinction between geodesics and geodesic segments unless it is essential to do so.
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This is clearly identical to (3.4.30).
It turns out that the left member of the equivalence in (3.4.32) provides

a very convenient way of calculating the Christoffel symbols: given a metric
g, write down L , work out the Euler-Lagrange equations, and identify the
Christoffels as the coefficients of the first derivative terms in those equations;
see Example 3.5.2 below for an application.

The Euler-Lagrange equations for (3.4.31) are identical with those of

Ĩ(γ) =
∫ b

a

√
|g(γ̇, γ̇)(s)|ds , (3.4.33)

but (3.4.31) is more convenient to work with. Note also that L is differentiable
at points where γ̇ vanishes, while

√
|g(γ̇, γ̇)(s)| is not. The aesthetic advantage of

(3.4.33), of being reparameterization-invariant, is more than compensated by the
calculational convenience of L .

3.5 Curvature

Let ∇ be a covariant derivative defined for vector fields, the curvature tensor
is defined by the formula

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z , (3.5.1)

where, as elsewhere, [X, Y ] is the Lie bracket defined in (3.1.4). We note the
anti-symmetry

R(X, Y )Z = −R(Y, X)Z . (3.5.2)

It turns out the this defines a tensor. Multi-linearity with respect to addition
is obvious, but multiplication by functions require more work.

First, we have (see (3.4.21))

R(fX, Y )Z = ∇fX∇Y Z −∇Y∇fXZ −∇[fX,Y ]Z

= f∇X∇Y Z −∇Y (f∇XZ)− ∇f [X,Y ]−Y (f)XZ︸ ︷︷ ︸
=f∇[X,Y ]Z−Y (f)∇XZ

= fR(X, Y )Z .

The simplest proof of linearity in the last slot proceeds via an index calculation in
adapted coordinates; so while we will do the “elegant”, index-free version shortly,
let us do the ugly one first. We use the coordinate system of Proposition 3.5.3
below, in which the first derivatives of the metric vanish at the prescribed point p:

∇i∇jZ
k = ∂i(∂jZ

k − Γk
`jZ

`) + 0×∇Z︸ ︷︷ ︸
at p

= ∂i∂jZ
k − ∂iΓk

`jZ
` at p . (3.5.3)

Antisymmetrising in i and j, the terms involving the second derivatives of Z drop
out, so the result is indeed linear in Z. So ∇i∇jZ

k−∇j∇iZ
k is a tensor field linear

in Z, and therefore can be written as Rk
`ijZ

`.
Note that ∇i∇jZ

k is, by definition, the tensor field of first covariant derivatives
of the tensor field ∇jZ

k, and it isn’t completely obvious that this is the same as
what occurs in (3.5.1), so this argument requires a further justification.
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Next,

R(X, Y )(fZ) = ∇X∇Y (fZ)−∇Y∇X(fZ)−∇[X,Y ](fZ)

=
{
∇X

(
Y (f)Z + f∇Y Z

)}
−

{
· · ·

}
X↔Y

−[X,Y ](f)Z − f∇[X,Y ]Z

=
{

X(Y (f))Z︸ ︷︷ ︸
a

+ Y (f)∇XZ + X(f)∇Y Z︸ ︷︷ ︸
b

+f∇X∇Y Z
}
−

{
· · ·

}
X↔Y

− [X, Y ](f)Z︸ ︷︷ ︸
c

−f∇[X,Y ]Z .

Now, a together with its counterpart with X and Y interchanged cancel out
with c, while b is symmetric with respect to X and Y and therefore cancels out
with its counterpart with X and Y interchanged, leading to the desired equality

R(X, Y )(fZ) = fR(X,Y )Z .

In a coordinate basis {ea} = {∂µ} we find3 (recall that [∂µ, ∂ν ] = 0)

Rα
βγδ := 〈dxα, R(∂γ , ∂δ)∂β〉

= 〈dxα,∇γ∇δ∂β〉 − 〈· · ·〉δ↔γ

= 〈dxα,∇γ(Γσ
βδ∂σ)〉 − 〈· · ·〉δ↔γ

= 〈dxα, ∂γ(Γσ
βδ)∂σ + Γρ

σγΓσ
βδ∂ρ〉 − 〈· · ·〉δ↔γ

= {∂γΓα
βδ + Γα

σγΓσ
βδ} − {· · ·}δ↔γ ,

leading finally to

Rα
βγδ = ∂γΓα

βδ − ∂δΓα
βγ + Γα

σγΓσ
βδ − Γα

σδΓσ
βγ . (3.5.4)

In a general frame some supplementary commutator terms will appear in the
formula for Ra

bcd.
We note the following:

Theorem 3.5.1 There exists a coordinate system in which the metric tensor
field has vanishing second derivatives at p if and only if its Riemann tensor
vanishes at p. Furthermore, there exists a coordinate system in which the met-
ric tensor field has constant entries near p if and only if the Riemann tensor
vanishes near p.

Proof: The condition is necessary, since Riem is a tensor. The sufficiency will
be admitted. 2

The calculation of the curvature tensor is often a very traumatic experience.
There is one obvious case where things are painless, when all gµν ’s are constants:
in this case the Christoffels vanish, and so does the curvature tensor.

For more general metrics one way out is to use symbolic computer algebra,
e.g. on http://grtensor.phy.queensu.ca/NewDemo.

3The reader is warned that certain authors use a different sign convention either for
R(X, Y )Z, or for Rα

βγδ, or both. A useful table that lists the sign conventions for a se-
ries of standard GR references can be found on the backside of the front cover of [48].
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Example 3.5.2 As a less trivial example, consider the round two sphere, which
we write in the form

g = dθ2 + e2fdϕ2 , e2f = sin2 θ .

The Christoffel symbols are easily founds from the Lagrangean for geodesics:

L =
1
2
(θ̇2 + e2f ϕ̇2) .

The Euler-Lagrange equations give

Γθ
ϕϕ = −f ′e2f , Γϕ

θϕ = Γϕ
ϕθ = f ′ ,

with the remaining Christoffel symbols vanishing. Using the definition of the Rie-
mann tensor we then immediately find

Rϕ
θϕθ = −f ′′ − (f ′)2 = 1 .

All remaining components of the Riemann tensor can be obtained from this one by
raising and lowering of indices, together with the symmetry operations which we
are about to describe. This leads to

Rab = gab , R = 2 .

Equation (3.5.1) is most frequently used “upside-down”, not as a definition
of the Riemann tensor, but as a tool for calculating what happens when one
changes the order of covariant derivatives. Recall that for partial derivatives
we have

∂µ∂νZ
σ = ∂ν∂µZσ ,

but this is not true in general if partial derivatives are replaced by covariant
ones:

∇µ∇νZ
σ 6= ∇ν∇µZσ .

To find the correct formula let us consider the tensor field S defined as

Y −→ S(Y ) := ∇Y Z .

In local coordinates, S takes the form

S = ∇µZν dxµ ⊗ ∂ν .

It follows from the Leibniz rule — or, equivalently, from the definitions in
Section 3.4 — that we have

(∇XS)(Y ) = ∇X(S(Y ))− S(∇XY )
= ∇X∇Y Z −∇∇XY Z .

The commutator of the derivatives can then be calculated as

(∇XS)(Y )− (∇Y S)(X) = ∇X∇Y Z −∇Y∇XZ −∇∇XY Z +∇∇Y XZ

= ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

+∇[X,Y ]Z −∇∇XY Z +∇∇Y XZ

= R(X,Y )Z −∇T (X,Y )Z . (3.5.5)
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Writing ∇S in the usual form

∇S = ∇σSµ
ν dxσ ⊗ dxµ ⊗ ∂ν = ∇σ∇µZν dxσ ⊗ dxµ ⊗ ∂ν ,

we are thus led to

∇µ∇νZ
α −∇ν∇µZα = Rα

σµνZ
σ − T σ

µν∇σZα . (3.5.6)

In the important case of vanishing torsion, the coordinate-component equivalent
of (3.5.1) is thus

∇µ∇νX
α −∇ν∇µXα = Rα

σµνX
σ . (3.5.7)

An identical calculation gives, still for torsionless connections,

∇µ∇νaα −∇ν∇µaα = −Rσ
αµνaσ . (3.5.8)

For a general tensor t and torsion-free connection each tensor index comes with
a corresponding Riemann tensor term:

∇µ∇νtα1...αr
β1...βs −∇ν∇µtα1...αr

β1...βs =
−Rσ

α1µνtσ...αr
β1...βs − . . .−Rσ

αrµνtα1...σ
β1...βs

+Rβ1
σµνtα1...αr

σ...βs + . . . + Rβs
σµνtα1...αr

β1...σ . (3.5.9)

3.5.1 Bianchi identities

We have already seen the anti-symmetry property of the Riemann tensor, which
in the index notation corresponds to the equation

Rα
βγδ = −Rα

βδγ . (3.5.10)

There are a few other identities satisfied by the Riemann tensor, we start with
the first Bianchi identity. Let A(X, Y, Z) be any expression depending upon
three vector fields X,Y, Z which is antisymmetric in X and Y , we set

∑

[XY Z]

A(X,Y, Z) := A(X, Y, Z) + A(Y, Z,X) + A(Z,X, Y ) , (3.5.11)

thus
∑

[XY Z] is a sum over cyclic permutations of the vectors X,Y, Z. Clearly,

∑

[XY Z]

A(X,Y, Z) =
∑

[XY Z]

A(Y, Z, X) =
∑

[XY Z]

A(Z,X, Y ) . (3.5.12)

Suppose, first, that X, Y and Z commute. Using (3.5.12) together with the
definition (3.4.18) of the torsion tensor T we calculate

∑

[XY Z]

R(X, Y )Z =
∑

[XY Z]

(
∇X∇Y Z −∇Y∇XZ

)

=
∑

[XY Z]

(
∇X∇Y Z −∇Y (∇ZX + T (X,Z))︸ ︷︷ ︸

we have used [X,Z]=0, see (3.4.18)

)
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=
∑

[XY Z]

∇X∇Y Z −
∑

[XY Z]

∇Y∇ZX

︸ ︷︷ ︸
=0 (see (3.5.12))

−
∑

[XY Z]

∇Y (T (X, Z)︸ ︷︷ ︸
=−T (Z,X)

)

=
∑

[XY Z]

∇X(T (Y, Z)) ,

and in the last step we have again used (3.5.12). This can be somewhat re-
arranged by using the definition of the covariant derivative of a higher or-
der tensor (compare (3.4.16)) — equivalently, using the Leibniz rule rewritten
upside-down:

(∇XT )(Y, Z) = ∇X(T (Y,Z))− T (∇XY, Z)− T (Y,∇XZ) .

This leads to
∑

[XY Z]

∇X(T (Y, Z)) =
∑

[XY Z]

(
(∇XT )(Y,Z) + T (∇XY,Z) + T (Y, ∇XZ︸ ︷︷ ︸

=T (X,Z)+∇ZX

)
)

=
∑

[XY Z]

(
(∇XT )(Y,Z)− T (T (X,Z)︸ ︷︷ ︸

=−T (Z,X)

, Y )
)

+
∑

[XY Z]

T (∇XY, Z) +
∑

[XY Z]

T (Y,∇ZX)︸ ︷︷ ︸
=−T (∇ZX,Y )︸ ︷︷ ︸

=0 (see (3.5.12))

=
∑

[XY Z]

(
(∇XT )(Y,Z) + T (T (X, Y ), Z)

)
.

Summarizing, we have obtained the first Bianchi identity:
∑

[XY Z]

R(X, Y )Z =
∑

[XY Z]

(
(∇XT )(Y, Z) + T (T (X,Y ), Z)

)
, (3.5.13)

under the hypothesis that X, Y and Z commute. However, both sides of this
equation are tensorial with respect to X, Y and Z, so that they remain correct
without the commutation hypothesis.

We are mostly interested in connections with vanishing torsion, in which
case (3.5.13) can be rewritten as

Rα
βγδ + Rα

γδβ + Rα
δβγ = 0 . (3.5.14)

Our next goal is the second Bianchi identity. We consider four vector fields
X, Y , Z and W and we assume again that everybody commutes with everybody
else. We calculate

∑

[XY Z]

∇X(R(Y, Z)W ) =
∑

[XY Z]

(
∇X∇Y∇ZW︸ ︷︷ ︸

=R(X,Y )∇ZW+∇Y ∇X∇ZW

−∇X∇Z∇Y W
)

=
∑

[XY Z]

R(X, Y )∇ZW
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+
∑

[XY Z]

∇Y∇X∇ZW −
∑

[XY Z]

∇X∇Z∇Y W

︸ ︷︷ ︸
=0

. (3.5.15)

Next,
∑

[XY Z]

(∇XR)(Y,Z)W =
∑

[XY Z]

(
∇X(R(Y, Z)W )−R(∇XY, Z)W

−R(Y, ∇XZ︸ ︷︷ ︸
=∇ZX+T (X,Z)

)W −R(Y, Z)∇XW
)

=
∑

[XY Z]

∇X(R(Y,Z)W )

−
∑

[XY Z]

R(∇XY,Z)W −
∑

[XY Z]

R(Y,∇ZX)W︸ ︷︷ ︸
=−R(∇ZX,Y )W︸ ︷︷ ︸

=0

−
∑

[XY Z]

(
R(Y, T (X,Z))W + R(Y, Z)∇XW

)

=
∑

[XY Z]

(
∇X(R(Y, Z)W )−R(T (X,Y ), Z)W −R(Y,Z)∇XW

)
.

It follows now from (3.5.15) that the first term cancels out the third one, leading
to ∑

[XY Z]

(∇XR)(Y, Z)W = −
∑

[XY Z]

R(T (X, Y ), Z)W , (3.5.16)

which is the desired second Bianchi identity for commuting vector fields. As
before, because both sides are multi-linear with respect to addition and multi-
plication by functions, the result remains valid for arbitrary vector fields.

For torsionless connections the components equivalent of (3.5.16) reads

Rα
µβγ;δ + Rα

µγδ;β + Rα
µδβ;γ = 0 . (3.5.17)

3.5.2 Pair interchange symmetry

There is one more identity satisfied by the curvature tensor which is specific to
the curvature tensor associated with the Levi-Civita connection, namely

g(X,R(Y, Z)W ) = g(Y, R(X, W )Z) . (3.5.18)

If one sets
Rabcd := gaeR

e
bcd , (3.5.19)

then (3.5.18) is equivalent to

Rabcd = Rcdab . (3.5.20)
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We will present two proofs of (3.5.18). The first is direct, but not very
elegant. The second is prettier, but less insightful.

For the ugly proof, it is convenient to first establish some preliminary results,
which are of interest on their own:

Proposition 3.5.3 1. Let g be a continuous Lorentzian metric, for every p ∈
M there exists a neighborhood thereof with a coordinate system such that gµν =
ηµν = diag(−1, +1, · · · , +1) at p.

2. If g is differentiable, then the coordinates can be further chosen so that

∂σgαβ = 0 (3.5.21)

at p, while preserving the degree of differentiability of g.

Remark 3.5.4 The properties spelled-out above do of course hold in the normal
coordinates. However, the introduction of normal coordinates does lead to a loss
of differentiability of the metric.

Proof: 1. Let yµ be any coordinate system around p, shifting by a constant
vector we can assume that p corresponds to yµ = 0. Let ea = ea

µ∂/∂yµ be any
frame at p such that g(ea, eb) = ηab — such frames can be found by, e.g., a
Gram-Schmidt orthogonalisation. Calculating the determinant of both sides of
the equation

gµνea
µeb

ν = ηab

we obtain, at p,
det(gµν) det(ea

µ)2 = −1 ,

which shows that det(ea
µ) is non-vanishing. It follows that the formula

yµ = eµ
ax

a

defines a (linear) diffeomorphism. In the new coordinates we have, again at p,

g
( ∂

∂xa
,

∂

∂xb

)
= eµ

ae
ν
bg

( ∂

∂yµ
,

∂

∂yν

)
= ηab . (3.5.22)

2. Let xµ be the coordinates described in point 1., note that p lies at the
origin of those coordinates. The new coordinates zα will be implicitly defined
by the equations

xµ = zµ +
1
2
Aµ

αβzαzβ ,

where Aµ
αβ is a set of constants, symmetric with respect to the interchange of

α and β . Set

g′αβ := g
( ∂

∂zα
,

∂

∂zβ

)
, gαβ := g

( ∂

∂xα
,

∂

∂xβ

)
.

Recall the transformation law

g′µν(z
σ) = gαβ(xρ(zσ))

∂xα

∂zµ

∂xβ

∂zν
.
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By differentiation one obtains at xµ = zµ = 0,

∂g′µν

∂zρ
(0) =

∂gµν

∂xρ
(0) + gαβ(0)

(
Aα

µρδ
β
ν + δα

µAβ
νρ

)

=
∂gµν

∂xρ
(0) + Aνµρ + Aµνρ , (3.5.23)

where
Aαβγ = gασ(0)Aσ

βγ .

It remains to show that we can choose Aσ
βγ so that the left-hand-side can be

made to vanish at p. An explicit formula for Aσβγ can be obtained from (3.5.23)
by a cyclic permutation calculation similar to that in (3.4.26). After raising the
first index, the final result is

Aα
βγ =

1
2
gαρ

{
∂gβγ

∂xρ
− ∂gβρ

∂xγ
− ∂gργ

∂xβ

}
(0) ;

the reader may wish to check directly that this does indeed lead to a vanishing
right-hand-side of (3.5.23). 2

We are ready now to pass to the proof of (3.5.20). We suppose that the
metric is twice-differentiable, by point 2. of Proposition 3.5.3 in a neighborhood
of any point p ∈ M there exists a coordinate system in which the connection
coefficients Γα

βγ vanish at p. Equation (3.5.4) evaluated at p therefore reads

Rα
βγδ = ∂γΓα

βδ − ∂δΓα
βγ

=
1
2

{
gασ∂γ(∂δgσβ + ∂βgσδ − ∂σgβδ)

−gασ∂δ(∂γgσβ + ∂βgσγ − ∂σgβγ)
}

=
1
2
gασ

{
∂γ∂βgσδ − ∂γ∂σgβδ − ∂δ∂βgσγ + ∂δ∂σgβγ

}
.

Equivalently,

Rσβγδ(0) =
1
2

{
∂γ∂βgσδ − ∂γ∂σgβδ − ∂δ∂βgσγ + ∂δ∂σgβγ

}
(0) .(3.5.24)

This last expression is obviously symmetric under the exchange of σβ with γδ,
leading to (3.5.20).

The above calculation traces back the pair-interchange symmetry to the
definition of the Levi-Civita connection in terms of the metric tensor. As already
mentioned, there exists a more elegant proof, where the origin of the symmetry
is perhaps somewhat less apparent, which proceeds as follows: We start by
noting that

0 = ∇a∇bgcd −∇b∇agcd = −Re
cabged −Re

dabgce , (3.5.25)

leading to anti-symmetry in the first two indices:

Rabcd = −Rbacd .
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Next, using the cyclic symmetry for a torsion-free connection, we have

Rabcd + Rcabd + Rbcad = 0 ,

Rbcda + Rdbca + Rcdba = 0 ,

Rcdab + Racdb + Rdacb = 0 ,

Rdabc + Rbdac + Rabdc = 0 .

The desired equation (3.5.20) follows now by adding the first two and subtract-
ing the last two equations, using (3.5.25).

It is natural to enquire about the number of independent components of a tensor
with the symmetries of a metric Riemann tensor in dimension n, the calculation
proceeds as follows: as Rabcd is symmetric under the exchange of ab with cd, and
anti-symmetric in each of these pairs, we can view it as a symmetric map from the
space of anti-symmetric tensor with two indices. Now, the space of anti-symmetric
tensors is N = n(n − 1)/2 dimensional, while the space of symmetric maps in
dimension N is N(N +1)/2 dimensional, so we obtain at most n(n−1)(n2−n+2)/8
free parameters. However, we need to take into account the cyclic identity:

Rabcd + Rbcad + Rcabd = 0 . (3.5.26)

If a = b this reads
Raacd + Racad + Rcaad = 0 ,

which has already been accounted for. Similarly if a = d we obtain

Rabca + Rbcaa + Rcaba = 0 ,

which holds in view of the previous identities. We conclude that the only new
identities which could possibly arise are those where abcd are all distinct. Clearly no
expression involving three such components of the Riemann tensor can be obtained
using the previous identities, so this is an independent constraint. In dimension four
(3.5.26) provides thus four candidate equations for another constraint, labeled by d,
but it is easily checked that they all coincide; this leads to 20 free parameters at each
space point. The reader is encouraged to finish the counting in higher dimensions.

3.6 Geodesic deviation (Jacobi equation)

Suppose that we have a one parameter family of geodesics γ(s, λ), where s is
the parameter along the geodesic, and λ is a parameter which distinguishes the
geodesics. Set

Z(s, λ) :=
∂γ(s, λ)

∂λ
≡ ∂γi(s, λ)

∂λ
∂i ,

for each λ this defines a vector field Z along γ(λ), which measures how nearby
geodesics deviate from each other, since, to first order,

γi(s, λ) = γi(s, λ0) + Zi(λ− λ0) + O((λ− λ0)2) .

To measure how a vector field W changes along s → γ(s, λ) one introduces
the operator

DWµ

ds
:=

∂Wµ

∂s
+ Γµ

αβ γ̇βWα (3.6.1)
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= γ̇β ∂Wµ

∂xβ
+ Γµ

αβ γ̇βWα (3.6.2)

= γ̇β∇βWµ . (3.6.3)

(It would perhaps be more logical to write DW µ

∂s , but we will stick to the previous
notation.) Analogously we define

DWµ

dλ
:=

∂Wµ

∂λ
+ Γµ

αβ∂λγβWα (3.6.4)

= ∂λγβ ∂Wµ

∂xβ
+ Γµ

αβ∂λγβWα (3.6.5)

= Zβ∇βWµ . (3.6.6)

Note that since s → γ(s, λ) is a geodesic we have from (3.6.1) and (3.6.3)

D2γµ

ds2
:=

Dγ̇µ

ds
= γ̇α∇αγ̇µ =

∂2γµ

∂s
+ Γµ

αβ γ̇β γ̇α = 0 . (3.6.7)

Further,

∇γ̇Zµ = γ̇ν∇νZ
µ = γ̇ν∇ν∂λγµ =︸︷︷︸

(3.6.3)

∂2γµ

∂s∂λ
+Γµ

αβ γ̇β∂λγα =︸︷︷︸
(3.6.6)

Zβ∇β γ̇µ = ∇Z γ̇µ .

(3.6.8)
In other words,

∇γ̇Z = ∇Z γ̇ . (3.6.9)

One then calculates as follows:

D2Zµ

ds2
(s) = γ̇α∇α(γ̇β∇βZµ)

= γ̇α∇α(Zβ∇β γ̇µ)
= (γ̇α∇αZβ)∇β γ̇µ + Zβ γ̇α∇α∇β γ̇µ

= (γ̇α∇αZβ)∇β γ̇µ + Zβ γ̇α(∇α∇β −∇β∇α)γ̇µ + Zβ γ̇α∇β∇αγ̇µ

= (γ̇α∇αZβ)∇β γ̇µ + Zβ γ̇αRαβσ
µγ̇σ + Zβ γ̇α∇β∇αγ̇µ

= (γ̇α∇αZβ)∇β γ̇µ + Zβ γ̇αRαβσ
µγ̇σ + Zβ∇β(γ̇α∇αγ̇µ

︸ ︷︷ ︸
0

)− (Zβ∇β γ̇α)∇αγ̇µ .

The first and the last term cancel out by (3.6.9), resulting in

D2Zµ

ds2
(s) = Rαβσ

µγ̇αZβ γ̇σ . (3.6.10)

We have obtained an equation known as the Jacobi equation, or as the
geodesic deviation equation:

D2Z

ds2
= R(γ̇, Z)γ̇ . (3.6.11)

Solutions of (3.6.11) are called Jacobi fields along γ.
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3.7 Moving frames

A formalism which is very convenient for practical calculations is that of moving
frames; it also plays a key role when considering spinors. By definition, a
moving frame is a (locally defined) field of bases {ea} of TM such that the
scalar products

gab := g(ea, eb) (3.7.1)

are point independent. In most standard applications one assumes that the ea’s
form an orthonormal basis, so that gab is a diagonal matrix with plus and minus
ones on the diagonal. However, it is sometimes convenient to allow other such
frames, e.g. with isotropic vectors being members of the frame.

It is customary to denote by ωa
bc the associated connection coefficients:

ωa
bc := θa(∇eceb) ⇐⇒ ∇Xeb = ωa

bcX
cea , (3.7.2)

where, as elsewhere, {θa(p)} is a basis of T ∗p M dual to {ea(p)} ⊂ TpM ; we will
refer to θa as a coframe. The connection one forms ωa

b are defined as

ωa
b(X) := θa(∇Xeb) ⇐⇒ ∇Xeb = ωa

b(X)ea . (3.7.3)

As always we use the metric to raise and lower indices, so that

ωabc := gadω
e
bc , ωab := gaeω

e
b . (3.7.4)

When ∇ is metric compatible, the ωab’s are anti-antisymmetric: indeed, as the
gab’s are point independent, for any vector field X we have

0 = X(gab) = X(g(ea, eb)) = g(∇Xea, eb) + g(ea,∇Xeb)
= g(ωc

a(X)ec, eb) + g(ea, ω
d
b(X)ed)

= gcbω
c
a(X) + gadω

d
b(X)

= ωba(X) + ωab(X) .

Hence
ωab = −ωba ⇐⇒ ωabc = −ωbac . (3.7.5)

If the connection is the Levi-Civita connection of g, this equation will allow us
to algebraically express the ωab’s in terms of the Lie brackets of the vector fields
ea. In order to see this, we note that

g(ea,∇eceb) = g(ea, ω
d
bced) = gadω

d
bc = ωabc .

Rewritten the other way round this gives an alternative equation for the ω’s
with all indices down:

ωabc = g(ea,∇eceb) ⇐⇒ ωab(X) = g(ea,∇Xeb) . (3.7.6)

If ∇ has no torsion we find

ωabc − ωacb = g(ea,∇eceb −∇eb
ec) = g(ea, [ec, eb]) .
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We can now do the usual cyclic permutation calculation to obtain

ωabc − ωacb = g(ea, [ec, eb]) ,

−(ωbca − ωbac) = −g(eb, [ea, ec]) ,

−(ωcab − ωcba) = −g(ec, [eb, ea]) .

Summing the three equations and using (3.7.5) we obtain

ωabc =
1
2

(
g(ea, [ec, eb])− g(eb, [ea, ec])− g(ec, [eb, ea])

)
. (3.7.7)

Equation (3.7.7) provides an explicit expression for the ω’s. While it is useful to
know that there is one, and while this expression is useful to estimate things, it
is rarely used for practical calculations; see Example 3.7.1 for more comments
about that last issue.

It turns out that one can obtain a simple expression for the torsion of ω
using exterior differentiation. Recall that if α is a one-form, then its exterior
derivative dα can be defined using the formula

dα(X, Y ) = X(α(Y ))− Y (α(X))− α([X,Y ]) . (3.7.8)

We set
T a(X,Y ) := θa(T (X, Y )) ,

and using (3.7.8) together with the definition (3.4.18) of the torsion tensor T
we calculate as follows:

T a(X, Y ) = θa(∇XY −∇Y X − [X, Y ])
= X(Y a) + ωa

b(X)Y b − Y (Xa)− ωa
b(Y )Xb − θa([X, Y ])

= X(θa(Y ))− Y (θa(X))− θa([X,Y ]) + ωa
b(X)θb(Y )− ωa

b(Y )θb(X)
= dθa(X,Y ) + (ωa

b ∧ θb)(X, Y ) .

It follows that
T a = dθa + ωa

b ∧ θb . (3.7.9)

In particular when the torsion vanishes we obtain the so-called Cartan’s first
structure equation

dθa + ωa
b ∧ θb = 0 . (3.7.10)

Example 3.7.1 As an example of the moving frame technique we consider (the
most general) three-dimensional spherically symmetric metric

g = e2β(r)dr2 + e2γ(r)dθ2 + e2γ(r) sin2 θdϕ2 . (3.7.11)

There is an obvious choice of ON coframe for g given by

θ1 = eβ(r)dr , θ2 = eγ(r)dθ , θ3 = eγ(r) sin θdϕ , (3.7.12)

leading to
g = θ1 ⊗ θ1 + θ2 ⊗ θ2 + θ3 ⊗ θ3 ,
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so that the frame ea dual to the θa’s will be ON, as desired:

gab = g(ea, eb) = diag(1, 1, 1) .

The idea of the calculation which we are about to do is the following: there is only
one connection which is compatible with the metric, and which is torsion free. If
we find a set of one forms ωab which exhibit the properties just mentioned, then
they have to be the connection forms of the Levi-Civita connection. As shown in
the calculation leading to (3.7.5), the compatibility with the metric will be ensured
if we require

ω11 = ω22 = ω33 = 0 ,

ω12 = −ω21 , ω13 = −ω31 , ω23 = −ω32 .

Next, we have the equations for the vanishing of torsion:

0 = dθ1 = − ω1
1︸︷︷︸

=0

θ1 − ω1
2θ

2 − ω1
3θ

3

= −ω1
2θ

2 − ω1
3θ

3 ,

dθ2 = γ′eγdr ∧ dθ = γ′e−βθ1 ∧ θ2

= − ω2
1︸︷︷︸

=−ω12

θ1 − ω2
2︸︷︷︸

=0

θ2 − ω2
3θ

3

= ω1
2θ

1 − ω2
3θ

3 ,

dθ3 = γ′eγ sin θ dr ∧ dϕ + eγ cos θ dθ ∧ dϕ = γ′e−βθ1 ∧ θ3 + e−γ cot θ θ2 ∧ θ3

= − ω3
1︸︷︷︸

=−ω13

θ1 − ω3
2︸︷︷︸

=−ω23

θ2 − ω3
3︸︷︷︸

=0

θ3

= ω1
3θ

1 + ω2
3θ

2 .

Summarising,

−ω1
2θ

2 − ω1
3θ

3 = 0 ,

ω1
2θ

1 − ω2
3θ

3 = γ′e−βθ1 ∧ θ2 ,

ω1
3θ

1 + ω2
3θ

2 = γ′e−βθ1 ∧ θ3 + e−γ cot θ θ2 ∧ θ3 .

It should be clear from the first and second line that an ω1
2 proportional to θ2 should

do the job; similarly from the first and third line one sees that an ω2
3 proportional

to θ3 should work. It is then easy to find the relevant coefficient, as well as to find
ω2

3:

ω1
2 = −γ′e−βθ2 = −γ′e−β+γdθ , (3.7.13a)

ω1
3 = −γ′e−βθ3 = −γ′e−β+γ sin θ dϕ , (3.7.13b)

ω2
3 = −e−γ cot θ θ3 = − cos θ dϕ . (3.7.13c)

It is convenient to define curvature two-forms:

Ωa
b =

1
2
Ra

bcdθ
c ∧ θd . (3.7.14)

The second Cartan structure equation then reads

Ωa
b = dωa

b + ωa
c ∧ ωc

b . (3.7.15)
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This identity is easily verified using (3.7.8):

Ωa
b(X,Y ) =

1
2
Ra

bcd θc ∧ θd(X,Y )︸ ︷︷ ︸
=XcY d−XdY c

= Ra
bcdX

cY d

= θa(∇X∇Y eb −∇Y∇Xeb −∇[X,Y ]eb)
= θa(∇X(ωc

b(Y )ec)−∇Y (ωc
b(X)ec)− ωc

b([X,Y ])ec)

= θa
(
X(ωc

b(Y ))ec + ωc
b(Y )∇Xec

−Y (ωc
b(X))ec − ωc

b(X)∇Y ec − ωc
b([X, Y ])ec

)

= X(ωa
b(Y )) + ωc

b(Y )ωa
c(X)

−Y (ωa
b(X))− ωc

b(X)ωa
c(Y )− ωa

b([X,Y ])
= X(ωa

b(Y ))− Y (ωa
b(X))− ωa

b([X, Y ])︸ ︷︷ ︸
=dωa

b(X,Y )

+ωa
c(X)ωc

b(Y )− ωa
c(Y )ωc

b(X)
= (dωa

b + ωa
c ∧ ωc

b)(X, Y ) .

Equation (3.7.15) provides an efficient way of calculating the curvature tensor
of any metric.

Example 3.7.1 continued: From (3.7.13) we find:

Ω1
2 = dω1

2 + ω1
1︸︷︷︸

=0

∧ω1
2 + ω1

2 ∧ ω2
2︸︷︷︸

=0

+ω1
3 ∧ ω3

2︸ ︷︷ ︸
∼θ3∧θ3=0

= −d(γ′e−β+γdθ)
= −(γ′e−β+γ)′dr ∧ dθ

= −(γ′e−β+γ)′e−β−γθ1 ∧ θ2

=
∑

a<b

R1
2abθ

a ∧ θb ,

which shows that the only non-trivial coefficient (up to permutations) with the pair
12 in the first two slots is

R1
212 = −(γ′e−β+γ)′e−β−γ . (3.7.16)

A similar calculation, or arguing by symmetry, leads to

R1
313 = −(γ′e−β+γ)′e−β−γ . (3.7.17)

Finally,

Ω2
3 = dω2

3 + ω2
1 ∧ ω1

3 + ω2
2︸︷︷︸

=0

∧ω2
3 + ω2

3 ∧ ω3
3︸︷︷︸

=0

= −d(cos θ dϕ) + (γ′e−βθ2) ∧ (−γ′e−βθ3)
= (e−2γ − (γ′)2e−2β)θ2 ∧ θ3 ,

yielding
R2

323 = e−2γ − (γ′)2e−2β . (3.7.18)
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The curvature scalar can easily be calculated now to be

R = Rij
ij = 2(R12

12 + R13
13 + R23

23)
= −4(γ′e−β+γ)′e−β−γ + 2(e−2γ − (γ′)2e−2β) . (3.7.19)
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